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Abstract 

The metabolites that provide the aroma and flavor to wine are the products of several influences, such as grape 
cultivar, geographic location and associated environmental features, viticultural practices, and vinification techniques, 
which are central to production protocols, quality evaluation and development of wine regions. Accordingly, we 
initiated the requisite studies to investigate the differences in the dry red wine metabolites of different grape varieties. 
The proton-nuclear magnetic resonance technique (1H-NMR) combined with multivariate statistical analysis was used 
to investigate the changes of metabolite levels in Cabernet Sauvignon, Merlot and Cabernet Gernischt dry red wines 
vinified in Changli, Hebei province, China, in 2017. The results showed that the types of metabolites in different varie-
ties of dry red wines were similar, but the content was significantly different. The main contributors to the differences 
in Cabernet Sauvignon, Merlot and Cabernet Gernischt dry red wines were ethyl acetate, lactic acid, alanine, succinic 
acid, proline, malic acid, and gallic acid, indicating 1H-NMR method combined with multivariate statistical analysis can 
distinguish these three types of dry red wines from each other. It provides a benchmark for further comparative study 
on wine quality and the verification of wine authenticity.
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Introduction
Dry red wine is a kind of natural alcoholic beverage with 
health care function. Long-term moderate drinking can 
delay aging, prevent and inhibit cardiovascular disease 
and cancer. As dry red wine contains colored substances 
in the peel or pulp, it is mainly in red color, such as deep 
ruby red, ruby red, magenta, crimson, brown red and so 
on. Changli is one of the important wine grape produc-
ing areas in China, with superior geographical location, 
unique geomorphological features, good soil and mete-
orological ecological conditions. Changli is located at 39° 
24′–40° 37′ north latitude, which is the same latitude as 

Bordeaux, France. The unique geographical characteris-
tics of bordering the Bohai Sea in the East and Yanshan 
Mountain in the North have created Changli production 
area. The annual sunshine duration is 2600–2800 h, the 
mean temperature difference between day and night is 12 
degrees, and the annual rainfall is 400–600 mm. There-
fore, it is necessary to study the metabolites of dry red 
wine in Changli region. Meanwhile, with the continuous 
development of the wine market, red wine counterfeiting 
and adulteration incidents have also occurred. Consid-
ering consumers’ pursuit of wine quality and safety, it is 
significant to find a convenient and fast way to identify 
different kinds of dry red wines, which provides a certain 
reference for consumers to choose dry red wine.

Nuclear magnetic resonance (NMR) technology has 
become an important detection method to obtain struc-
tural information of metabolites because of its fast analy-
sis speed, simple sample preparation, good repeatability 
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and good stability [1]. The combination of 1H NMR and 
pattern recognition technology has been widely used not 
only in food industry, but also in wine and some liquid 
beverages such as oil, juice, green tea, beer, etc. [2–5]. Ali 
et  al. [6] used NMR technology combined with pattern 
recognition analysis to study the inhibitory effect of wine 
metabolites on tumor necrosis factor. The results showed 
that the inhibitory effect of wine on tumor necrosis fac-
tor was affected by the influence of the vintage and type 
of wine on the metabolites. Mazzei et al. [7] used NMR 
techniques to analyze the wines from vineyards with dif-
ferent climatic and soil characteristics in Campania, Italy. 
The results showed that the differences between wines 
are associated with climate, the content of carbonate 
and organic matter in soil and other factors. As a com-
monly used data analysis method, multivariate statistical 
method is often combined with NMR technology, and 
is widely used in the determination and classification of 
food sources [8–11]. Lee et al. [12] used NMR techniques 
and multivariate statistical analysis method to distin-
guish wines from different vintages. The results showed 
that the main compounds causing differences in wines in 
different years were 2,3-butanediol, lactic acid, alanine, 
proline, γ-aminobutyric acid, choline, and polyphenols. 
Zhu et al. [13] used 1H-NMR combined with pattern rec-
ognition technology and multivariate statistical analysis 
method to make a distinction between Cabernet Sauvi-
gnon and Shiraz red wine brewed in Shanxi in 2016, and 
found key contributors to differences were proline, tar-
taric acid, glycerol, lactic acid, choline, succinic acid and 
gallic acid. All these results showed that 1H-NMR com-
bined with multivariate analysis was a good tool for iden-
tifying the different wines.

This study investigated the differences of metabolites 
in different varieties of dry red wine based on 1H-NMR 
metabolomics and multivariate statistical analysis meth-
ods, provided an effective and feasible method for the 
identification of dry red wine varieties, and offered rea-
sonable advice for consumers to choose suitable dry red 
wines.

Materials and methods
Wine sample
The wines used in this experiment were provided by 
Hebei Changli Grape Wine Co., Ltd., and all the single 
varieties of wine in 2017 were made by the standard 
process, using the following techniques: De-stemmed 
and crushed the grapes, and then added the yeast 
to ferment at 25  °C for 8–10  days, followed by press-
ing the pomace gently. The wine was separated and 
tank-switched, and then sampled for pretreatment. 
The physical and chemical indicators of all wine sam-
ples were in line with the requirements of the Chinese 

National Standard (GB15037-2006), and the samples 
were stored at − 4 °C for further use.

NMR spectroscopic analysis
NMR sample pretreatment
Ten milliliters of wine were taken, and then centri-
fuged at the speed of 3000  rpm at − 4  °C for 20  min. 
Three milliliters of supernatant fluid were pre-frozen 
at − 80  °C for 12 h, and then lyophilized for 48 h. The 
lyophilized product was dissolved in 400 μL of oxalate 
buffer (pH = 4; Shanghai Suyi Chemical Reagent Co., 
Ltd., China), 140 μL D2O (deuterated degree > 99.9%; 
Qingdao Tenglong Microwave Technology Co., Ltd., 
China) and 60 μL of 0.5% DSS (4,4-dimethyl-4-silap-
entanesulfonate), the mixture were centrifuged at the 
speed of 13,000 rpm for 20 min. At last, 500 μL of the 
supernatant was loaded into a 5  mm nuclear tube for 
NMR analysis. Each sample was tested 4 times.

NMR spectrum acquisition
1H-NMR spectra of wine samples were taken on an 
AVANCE 600 Nuclear magnetic resonance Spectrom-
eter (Bruker Co., Ltd., Germany). The experiments were 
carried out at a constant temperature of 298  K. The 
1H-NMR operating frequency was 600.23  MHz and 
the spectral width was 7183.9 Hz. The number of sam-
pling points was 32k. The relaxation delay was set to 2 s 
and the sampling time was set to 2.3  s. The linewidth 
enhancement factor was 0.3  Hz. The NOESYGPPR1D 
sequence was used to suppress the water peak signal, 
and the number of scans was set at 256 times.

NMR spectral data processing
The chemical shift interval between 0 and 10.0  ppm 
in NMR spectrum was integrated at the section of 
0.005  ppm by using Software AMIX. The DSS peaks 
of − 0.5–0.5 ppm, 1.74–1.84 ppm, and 2.90–2.95 ppm, 
the residual ethanol peaks of 1.18–1.22 ppm and 3.57–
3.72 ppm, and the residual water peak of 4.8–4.96 ppm 
were removed. The integral data obtained by nuclear 
magnetics was normalized and then imported into Soft-
ware SIMCA-P 12.0 for multivariate statistical analy-
sis. In order to establish a more reasonable regression 
model, partial least square discriminant analysis (PLS-
DA) was used to strengthen the separation between the 
observation groups. In addition, PLS-DA also helps to 
understand which components carry category separa-
tion information, and the fitting degree of PLS-DA is 
verified by external model verification experiments.
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Results
Identification of metabolites in wine
One-dimensional NMR spectrum can provide structural 
information of metabolites. The NMR spectra of Cab-
ernet Sauvignon, Merlot and Cabernet Gernischt wines 
were shown in Fig. 1. As seen from the figure, most of the 
metabolites in the three wines were concentrated in the 
range of δH 9.00–δH 0.00. According to the related liter-
ature [14–17], the main characteristic peaks in the NMR 
spectrum of the corresponding wines were assigned, and 
the results were shown in Table 1.

It can be seen from the identified metabolites that 
these substances mainly included amino acids, organic 
acids, sugar, and phenolic, etc. These metabolites repre-
sented the overall metabolome of wine, indicating that 
1H-NMR can analyze these metabolites synchronously 
with high throughput [18]. At the same time, it could 
be found that most of the small molecule metabolites 
in wine samples were the same, which meant that the 
composition of small molecule metabolites in wine was 
relatively stable. However, the contents of metabolites in 
different types of wine samples were different, and each 
type of wine had its own characteristic spectrum, indicat-
ing that metabolic spectrogram in different types of wine 

samples described their physiological and biochemical 
states. Therefore, it is necessary to process these spectral 
data to find out the markers. The characteristic peaks in 
the NMR spectrum correspond to different metabolites 
in the wine samples, and the peak intensity (such as peak 
area) represented the relative content of the correspond-
ing metabolites [19]. Consequently, the NMR spectrum 
can effectively show the composition and content of 
metabolites in the wine samples, and can be studied as a 
metabolic fingerprint.

Differences in metabolites between different varieties 
of dry red wine
To find out the main metabolites that cause the differ-
ences in different types of dry red wine, NMR data of the 
dry red wine samples were imported into SIMCA P-12.0 
software for Partial least squares discrimination analy-
sis (PLS-DA). The PLS-DA model was established and 
the scores plot, cross-validation plot and loading plot of 
Merlot and Cabernet Sauvignon dry red wine was shown 
in Fig.  2. As seen from the scores plot, the two types 
of dry red wines could be clearly separated on the PC1 
axis, and the cumulative contribution rate R2X = 0.935, 
R2Y = 0.999, Q2 = 0.996, indicating that the model was 

Fig. 1  1H NMR spectra of lyophilized wines (The keys for metabolites are given in Table 1)
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Table 1  1H NMR assignment of metabolites in wines

Letters in parentheses indicate the peak multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and dd (doublet of doubles)

Keys Compound 1H-NMR chemical shift Group

1 Valine 0.88(d), 1.02(d) C4H3,C5H3

2 2,3-Butanediol 1.15(d) C1H3+C4H3

3 Ethanol 1.19(t), 3.56(q) C2H3,C1H2

4 Proline 2.00(m), 2.07(m), 2.35(m), 3.35(m), 3.42(m), 
4.16(m)

γ-CH2,β-CH,β’-CH,δ-CH,δ-CH,α-CH

5 Succinic acid 2.65(s) C2H2+C3H2

6 Ethyl acetate 1.26(t), 4.16(q) C4H3, C3H2

7 Tartaric acid 4.51(s) C2H+C3H

8 β-Glucose 4.61 (d) βC1H

9 α-Glucose 5.33(d) αC1H

10 Gallic acid 7.14(s) C2H+C6H

11 Glycerol 3.58(q), 3.67(m), 3.81(m) C2H2,C3H2,C1H

12 Lactic acid 1.39(d), 4.16(m) C3H3,C2H

13 Choline 3.20(s) N-CH3

14 α-d-Glucuronic acid 5.35(d) C1H

15 Malic acid 2.74(dd), 2.87(dd), 4.46(q) βCH2,β’CH2, CH

16 Citric acid 2.82(d), 2.94(d) C2Ha+C4Ha,C2Hb+C4Hb

17 Alanine 1.51(d) βCH3

18 Tyrosine 6.86(d),7.19(d) C2H,C3H

19 D-Sucrose 5.46(d), 3.55(dd), 3.72(dd), 3.90(dd), 4.215(d), 
4.05(dd), 3.88(dd)

C1H,C2H,C3H,C4H,C1′H,C2′H,C3′H

20 γ-Aminobutyric acid 2.50(t), 1.96(m), 3.05(t) α-CH2,β-CH2, γ-CH2

Fig. 2  PLS-DA model derived from the 1H NMR spectra of Merlot and Cabernet Sauvignon dry red wine. PLS-DA scores plot (a). PLS-DA 
cross-validation plot (b). PLS-DA loading plot (c)
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reliable. The permutation test was a widely used and 
effective method to verify the model quality. Results of 
cross-validation plot indicated that the values of R2 and 
Q2 did not exceed the quality parameters of the actual 
model, once again demonstrating this PLS-DA model 
was of good reliability and predictability. Major metabo-
lites that contributed to the discrimination of the two 
types of dry wine could be obtained from the PLS-DA 
loading plot. In the loading plot, the higher peak indi-
cated higher content of the corresponding metabolites, 
while the lower one indicated lower content of the corre-
sponding metabolites [13]. As seen from the loading plot, 
compared with Cabernet Sauvignon dry red wine, Merlot 
dry red wine had higher levels of proline, ethyl acetate, 
valine, 2,3-butanediol, succinic acid, glycerol, but lower 
levels of lactic acid, β-glucose, malic acid, tartaric acid, 
α-D-glucuronic acid, choline, alanine and gallic acid.

The PLS-DA scores plot, cross-validation plot and 
loading plot of Merlot and Cabernet Gernischt dry red 
wine was shown in Fig. 3. As seen from the scores plot, 
the two types of dry red wine were clearly distinguished 
on the PC1 axis, and the cumulative contribution rate 
R2X = 0.943, R2Y = 0.998, Q2 = 0.996, indicating that this 
model was of good quality. As seen from the cross-val-
idation plot of the permutation test in PLS-DA model, 
the values of R2 and Q2 did not exceed the quality param-
eters of the actual model, further demonstrated that the 

reliability and predictability of the model were better. It 
could be found from the loading plot that compared with 
Merlot dry red wine, Cabernet Gernischt dry red wine 
contained higher levels of choline, valine, malic acid, 
alanine, tartaric acid, ethyl acetate, lactic acid, proline, 
but lower levels of 2,3-butanediol, succinic acid, α-d-
Glucuronic acid, glycerol and gallic acid.

The PLS-DA scores plot, cross-validation plot and 
loading plot of Cabernet Sauvignon and Cabernet Ger-
nischt dry red wine was shown in Fig. 4. As seen from the 
scores plot, the two types of dry red wine were clearly dis-
tinguished on the PC1 axis, and the cumulative contribu-
tion rate R2X = 0.965, R2Y = 0.999, Q2 = 0.997, indicating 
that the model was valid. As seen from the cross-valida-
tion plot of the permutation test in PLS-DA model, the 
values of R2 and Q2 did not exceed the quality parameters 
of the actual model, further illustrated that the reliability 
and predictability of the model were excellent. It could be 
found from the loading plot that compared with Caber-
net Gernischt dry red wine, Cabernet Sauvignon dry red 
wine had higher levels of 2,3-butanediol, choline, tartaric 
acid, succinic acid, glycerol, gallic acid, α-d-glucuronic 
acid, but lower levels of proline, ethyl acetate, lactic acid, 
valine, alanine and malic acid.

The main metabolites of these three wines were quan-
titatively analyzed and the results were shown in Table 2. 
The content of these metabolites could be obtained by 

Fig. 3  PLS-DA model derived from the 1H NMR spectra of Merlot and Cabernet Gernischt dry red wines. PLS-DA scores plot (a). PLS-DA 
cross-validation plot (b). PLS-DA loading plot (c)
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calculating the ratio of the peak area generated by the 
proton on a specified group of the test substance to that 
of the added internal standard DSS in the one-dimen-
sional 1H-NMR spectrum. As seen from the Table  2, 
the main metabolite content was significantly different, 
which was consistent with the PLS-DA model. The con-
tents of succinic acid and glycerol in Merlot wine were 

the highest, gallic acid content in Cabernet Sauvignon 
wine was the highest, and the contents of lactic acid, ala-
nine, proline and malic acid in Cabernet Gernischt wine 
were the highest. This finding could offer advice for the 
consumers to choose the suitable wine for their needs.

Discussion
Since the 1H-NMR measurement requires almost no 
sample pretreatment, the inherent properties of the sam-
ple are well retained. A large number of studies have 
demonstrated that metabolites detected by 1H-NMR can 
be used to non-destructive identification of wine varie-
ties. Our results showed that there was little difference 
in the composition of metabolites in different varieties of 
dry red wines, while the content of these metabolites was 
quite different. The principal components responsible 
for the differences were ethyl acetate, lactic acid, alanine, 
succinic acid, proline, malic acid, glycerin, and gallic acid. 
These metabolites were significant, whose content were 
closely related to the flavor, taste and functional activity 
of wine.

Glycerol is the most abundant byproduct from yeasts 
alcoholic fermentation [20]. It has a slightly sweet taste 
and a viscous nature, which contributes to mouth-feel 
perception [21]. Several parameters, including pH, tem-
perature, sulfite concentration and yeast strain, have 
been shown to influence the final glycerol levels in wine 

Fig. 4  PLS-DA model derived from the 1H NMR spectra of Cabernet Sauvignon and Cabernet Gernischt dry red wines. PLS-DA scores plot (a). 
PLS-DA cross-validation plot (b). PLS-DA loading plot (c)

Table 2  Content of  the  main metabolites in  Merlot, 
Cabernet Sauvignon, and  Cabernet Gernischt dry red 
wines (g/L)

All statistical analyses were performed using SPSS 17.0 software (SPSS Inc., 
Chicago, USA). Data are presented as the mean ± SEM. The results were analysed 
by one-way ANOVA followed by Tukey’s HSD post hoc test. A p-value < 0.05 was 
considered statistically significant

Metabolites Contents (x̄ ± SD, n = 4)

Merlot Cabernet 
Sauvignon

Cabernet 
Gernischt

Ethyl acetate 1.706 ± 0.010a 1.519 ± 0.028b 1.744 ± 0.008a

Lactic acid 0.459 ± 0.015c 0.508 ± 0.029b 0.622 ± 0.030a

Alanine 0.016 ± 0.001c 0.037 ± 0.001b 0.065 ± 0.004a

Succinic acid 1.440 ± 0.027a 1.312 ± 0.016b 1.122 ± 0.054c

Proline 3.891 ± 0.157b 3.226 ± 0.044c 4.311 ± 0.081a

Malic acid 4.076 ± 0.240b 4.954 ± 0.166a 5.022 ± 0.0275a

Glycerol 14.776 ± 0.197a 13.989 ± 0.092b 13.245 ± 0.275c

Gallic acid 0.113 ± 0.002b 0.135 ± 0.003a 0.102 ± 0.004b
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[14, 22]. In this experiment, the brewing process of dif-
ferent varieties of wine is the same, so the difference in 
glycerin content is mainly attributed to different wine 
varietals. The glycerol level of Merlot wine is higher than 
that of other wines, indicating that Merlot wine may has 
the richest mellow taste. Ethyl acetate accounts for more 
than 90% of the total acetate esters produced by yeast. 
Through the introduction of fruity and floral notes, it 
can make positive contributions to wine aroma [23]. This 
experiment showed that the ethyl acetate level in Mer-
lot and Cabernet Gernischt wine are significantly higher 
than that in Cabernet Sauvignon wine. Therefore, flavor 
of Merlot and Cabernet Gernischt wine in this experi-
ment may be more abundant than Cabernet Sauvignon 
wine. Succinic acid is quantitatively the second most 
important non-volatile byproduct of alcohol fermenta-
tion [23]. It has the strongest acidic reaction among the 
organic acids in the wine, which makes the wine rich in 
flavor and mellow in taste [24]. The content of succinic 
acid is affected by malic acid and amino acid concen-
trations and yeast species. Merlot wine has the highest 
succinic acid level in this experiment, and this result 
also supports the flavor and taste of Merlot is the most 
abundant. In addition, Adrian et  al. [25] found that the 
concentration of glycerol and succinic acid have a strong 
correlation in a number of red wines, which was consist-
ent with our results.

In terms of taste, the decrease in succinic acid gives 
wine a softer mouthfeel [26]. Cabernet Gernischt wine 
has the lowest succinic acid level in this experiment, 
indicating that Cabernet Gernischt wine may has the 
softest taste. Lactic acid is a gentle and soft acid, which 
mainly derived from malolactic fermentation process 
[27]. The content of lactic acid in Cabernet Gernischt 
wine is higher than that in other wines, which contrib-
utes to the gentle and soft taste of Cabernet Gernischt 
wine. In addition to giving the wine a flavour of acid, 
sweetness and bitterness, amino acids can also inter-
act with ethanol, organic acids, sugars to form a unique 
mouthfeel, which will improve the nutritional value of 
the wine [26]. The proline content may be important 
for the wine’s “mouth” or “body”, because a salivary 
protein, which has a strong affinity for polyphenols, 
is rich in proline [14]. Chang et al. [28] found that the 
increase in the concentration of proline was beneficial 
to the balance of the wine. Lee et al. [12] found that the 
content of proline in wine depended on environmental 
factors and the variety of wine grape fruit. Alanine is an 
essential substance for the growth of yeast, and it exhib-
its a low content due to a large amount of consumption 
during the fermentation process. Herna´ndez-Orte 
et al. [29] found that addition of alanine and other three 
amino acids to grape juice of the Merlot variety can 

significantly decrease sulphured notes. Both of proline 
and alanine can soften the taste of the wine, and their 
contents in Cabernet Gernischt wine are the highest, 
further illustrated that Cabernet Gernischt wine has the 
sofetest taste.

Gallic acid, the most abundant phenolic compound in 
wine [30], is mainly derived from grape seeds and grape 
stems, as well as in contact with oak during fermentation 
process [14]. In this experiment, the gallic acid content 
of Cabernet Sauvignon wine is significantly higher than 
that of Merlot and Cabernet Gernischt wines. Researches 
have shown that gallic acid has anti-tumor effects and can 
resist a variety of carcinogenic substances [31]. There-
fore, the bioactivity and health function of Cabernet 
Sauvignon wine in this experiment may be the highest 
among the three types of wines. Malic acid is an impor-
tant organic acid in dry red wine, which are inherent in 
grape berry [32]. A large number of studies have shown 
that malic acid has many important biological activities, 
for example, it can effectively improve the body’s exer-
cise capacity, anti fatigue, accelerate the metabolism of 
carboxylate, protect the heart, and improve memory, etc. 
Malic acid content in Cabernet Sauvignon is higher, this 
result also supports that the bioactivity and health func-
tion of Cabernet Sauvignon wine in this experiment may 
be the highest among the three types of wines.

In this study, samples of Cabernet Sauvignon, Merlot 
and Cabernet Gernischt dry red wines vinified at Changli 
of Hebei province in 2017 were analyzed by 1H NMR and 
multivariate statistical analysis methods. The main con-
tributors to the notable differences among these three 
types of wines were identified. It provides a new technical 
solution for the adulteration identification of wine varie-
ties, and also offers advice for the consumers to choose 
these three wines according to their personal preferences: 
they can choose Merlot wine in pursuit of the richer fla-
vor and taste, Cabernet Gernischt wine in pursuit of the 
softer taste, and Cabernet Sauvignon wine in pursuit of 
the better healthy function.
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