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Abstract 

The scientific and systematic classification of cultivation age is important for preventing age falsification and ensuring 
the quality of ginseng. Therefore, we applied deep learning to classify the cultivation age of ginseng. Deep learning, 
which is based on an artificial neural network, is one of the new class of models for machine learning, and is state-of-
the-art. It is a powerful tool and has been used to solve complex problems in many fields. In the present study, pow‑
dered samples of 4-, 5-, and 6-year-old ginseng were measured using high-resolution magic angle spinning nuclear 
magnetic resonance (HR-MAS NMR) spectroscopy. NMR data were analyzed with deep learning and partial least-
squares discriminant analysis (PLS-DA) to improve accuracy. The accuracy of the PLS-DA was 87.1% and the accuracy 
of the deep learning model was 93.9%. NMR spectroscopy with deep learning can be a useful tool for discrimination 
of ginseng cultivation age.
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Introduction
Ginseng, which is a perennial crop, has been used for a 
natural medicinal ingredient for thousands of years in 
East Asia. Ginseng cultivated for 4–6  years is used as a 
medicine [1]. However, 6-year-old ginseng is known to 
be the most effective and is therefore the most expensive 
among them [2]. It is important to establish an efficient 
and accurate model for classifying and predicting ginseng 
cultivation age.

Previous studies conducted metabolic profiling and 
multivariate statistical analyses of origin, species, vari-
ety, age, and processing method of ginseng using nuclear 
magnetic resonance (NMR) spectroscopy, and all of these 
studies analyzed the extract of ginseng [3–8]. However, 

in this study, which analyzed with a lot of samples, the 
ginseng powder was directly used without extraction 
because solvents or procedures for extraction can affect 
the data. Several previous studies performed various 
tools such as combination of NMR spectrometer, ultra-
high-performance liquid chromatography quadrupole 
time-of-flight mass spectrometry (UPLC-QTOF/MS), 
and gas chromatography quadrupole time-of-fight mass 
spectrometry (GC-TOF/MS) [9], and Fourier-transform 
infrared (FT-IR) spectroscopy [10] for age discrimination 
of ginseng. HR-MAS technique combines the advantage 
of solid and solution-state NMR. Fast spinning the sam-
ple at the magic angle (54.7°) with respect to the static 
magnetic field (B0) reduces line-broadening interaction 
caused by dipolar coupling and chemical shift anisot-
ropy (Fig. 1). Thus, high resolution can be achieved [11, 
12]. This technique offers spectra with a similar resolu-
tion to that of solution without sample extraction process 
[13]. The advantage of HR-MAS compared to solution-
state NMR is that samples are measured in a state close 
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to the intact conditions. Furthermore, HR-MAS does not 
require an extraction process, which therefore reduces 
the experiment time [14].

In this study, in order to discriminate the age of vari-
ous ginseng harvested over many years, 1H HR-MAS 
NMR spectroscopy data was analyzed by partial least-
squares discriminant analysis (PLS-DA) which is subfield 
of machine learning. PLS-DA is widely used in metabolic 
analyses [15–18]. We also applied deep learning analy-
sis to improve accuracy for discrimination of ginseng 
age. Deep learning architectures such as deep neural 
networks (DNN) is one of the new class of models for 
machine learning [19], and is state-of-the-art. It is a pow-
erful tool and has been used to solve complex problems 
in many fields. Many important advances in machine 
learning have been made recently following improve-
ments in computing power and the amount of data 
available [20]. Moreover, open source machine learn-
ing libraries and frameworks have made deep learning 
more accessible to non-experts. This study is meaningful 
because it is the first study to apply HR-MAS NMR data 
to machine learning.

Materials and methods
Plant materials
Panax ginseng roots were cultivated in the experimen-
tal field at Kyung Hee University and at the Department 
of Herbal Crop Re-search located in Gangwon Prov-
ince, according to the protocol described in the ‘ginseng 
GAP standard cultivation guide’ developed by the Rural 
Development Administration, Republic of Korea (Rural 

Development Administration, 2009). Four-, five-, and 
six-year-old ginseng roots were harvested in October 
2014, October 2015, and October 2016, respectively. The 
voucher specimens (NIHHS141010 and NIHHS161001) 
were deposited at the herbarium of the Department of 
Herbal Crop Research, NIHHS, RDA, Eumseong, Repub-
lic of Korea.

Sample preparation
We analyzed a total 385 ginseng samples, which con-
tained 162 of 4-year-old samples, 108 of 5-year-old sam-
ples, and 115 of 6-year-old samples. Each sample was 
dried at 40 °C in a forced-air convection-drying oven for 
48  h after washing, and then weighed. The main roots 
were used for the experiments after removing the lat-
eral and fine roots. The roots were ground (< 0.5  mm) 
and thoroughly mixed using a Hanil Scientific Inc. mixer 
(Seoul, Korea), and the subsamples were homogenized 
further using a Retsch MM 400 mixer mill (Retsch 
GmbH, Haan, Germany) for the analyses.

NMR experiments
For measuring high-resolution magic angle spinning 
(HR-MAS) nuclear magnetic resonance (NMR) spec-
troscopy, each ginseng sample (3 mg) was transferred to 
a 4-mm HR-MAS NMR sample tube (Agilent Technolo-
gies, Santa Clara, CA, USA). Heavy water (D2O; 37 μL) 
containing 2  mM of 3-(trimethylsilyl) propionic-2,2,3,3-
d4 acid sodium salt (TSP-d4) was added to each sample 
tube.

All NMR spectra were measured using a 600.167 MHz 
Agilent spectrometer equipped with a 4-mm gHX 
NanoProbe (Agilent Technologies). The spinning rate 
was 2050  Hz for HR-MAS. We collected 128 transients 
using the Carr–Purcell–Meiboom–Gill (CPMG) pulse 
sequence with PRESAT for the suppression of water and 
high-molecular-mass compounds [21]. The one-dimen-
sional (1D) spectra were obtained using a 1.704 s acqui-
sition time, a 1  s relaxation delay. The TSP-d4 peak at 
0.00 ppm was used as a reference to calibrate the chemi-
cal shift [22]. And correlation spectroscopy (COSY), 
which is one of the homonuclear two-dimensional (2D) 
experiment, was recorded and processed with 128 of 
scans and 256 of t1 increments.

Metabolic profiling
All spectra were phased, and baseline corrected manu-
ally. Metabolites in spectra were assigned using Che-
nomx NMR Suite 7.1 professional with the Chenomx 
600 MHz library database (Chenomx Inc., Canada). Con-
centrations of metabolites were calculated based on the 
concentration of TSP-d4 at 2 mM. And overlapped signal 

Fig. 1  Schematic of a HR-MAS technique. The nanotube containing 
the sample is spinning with high frequency at a magic angle (54.7°) 
to the magnetic field direction (B0)
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areas were analyzed by a 2D correlation spectroscopy 
(COSY) NMR spectra [23].

Data pre‑processing
Each NMR spectrum was binned from 0.83 to 6.8 ppm, 
and the water peak area and spinning sideband area 
(1.15–1.185, 1.948–1.995, and 4.68–4.88  ppm) were 
excluded using Chenomx NMR suite 7.1 professional. 
The binning size was 0.01 ppm. To minimize the differ-
ence in concentration between the samples, the binning 
data were normalized to the total area. In this procedure, 
the NMR spectrum was divided into 480 variables. The 
pre-processed dataset was used to train and validate the 
classification model for cultivation age classification of 
ginseng. The dataset (385 samples) was randomly divided 
into a training dataset (70%) and test dataset (30%).

PLS‑DA
Partial least-squares discriminant analysis (PLS-DA) is 
one of the multivariate data analysis methods and is cur-
rently a popular classification method for metabolic anal-
ysis. The procedure was conducted using the scikit-learn 
0.19.2 [24] along with custom python codes. And, PLS-
DA model was optimized by finding the suitable number 
of components that minimizes the validation loss.

Deep learning
Deep learning processes were carried out using Keras 
package 2.2.2 in Python language 3.6. Figure 2 illustrates 
the construction of a deep neural network (DNN) model. 
Deep learning comprises a multi-layered neural network 
with multiple hidden layers in between the input and out-
put layers. Each neuron takes in a weighted input on the 
connection and provides an activation value as output 
through an activation function. In this non-linear pro-
cessing, raw data can be automatically transformed into 
learned features and representative data [25–28]. The 
DNN comprises four layers: an input layer, two hidden 
layers, and an output layer. Rectified Linear Units (ReLU) 
was used as an activation function in each layer [29] 
except for the output layer, in which Softmax was used 
instead of ReLU. This function is often used in multiclass 
classification methods in the output layer [30]. Dropout 
(the dropout ratio = 0.1) and batch normalization [31] 
were used in the present model. Dropout is effective for 
avoiding overfitting, and batch normalization enables 
higher learning rates and regularization. We used ‘cat-
egorical_crossentropy’ optimizer, ‘Adam’ loss function, 
and ‘accuracy’ metric function to compile the model. 
Other hyper-parameters were set to default. When train-
ing the deep learning models, we used ‘Modelcheckpoint’ 

Fig. 2  The architecture of the deep neural network model for classification of ginseng age
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to ensure that only the best model was saved if the valida-
tion loss improves over the best values. The stored best 

prediction model was then applied to make predictions 
on the test dataset.
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Fig. 3  Representative proton nuclear magnetic resonance (1H NMR) spectra of ginseng. a 4-year-old-ginseng, 5-year-old-ginseng, 
6-year-old-ginseng. b Expanded 1H NMR spectra of ginseng
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Fig. 4  Representative 2D COSY spectrum of ginseng

Table 1  Metabolites identified in the powdered ginseng from NMR data: assigned chemical shifts (multiplicities), relative 
concentrations

S singlet, d doublet, t triplet, m multiplet, dd doublet of doublet

Metabolite name Chemical shifts δ 1H (ppm), multiplicity Relative concentrations (%)

4 years 5 years 6 years

4-Aminobutyrate 2.29 (t), 1.89 (m), 3.00 (t) 0.7483 0.5596 0.6598

Alanine 1.46 (d), 3.78 (q) 0.4255 0.4903 0.9251

Arginine 1.66 (m), 1.91 (m), 3.27 (t), 3.77 (t) 7.8227 7.4908 9.5260

Asparagine 2.94 (dd), 2.84 (dd) 0.6440 0.8331 1.3128

Aspartate 2.67 (dd), 2.81 (dd) 1.0417 1.1327 1.2112

Choline 3.18 (s) 3.50 (dd), 4.05 (t) 0.4441 0.2738 0.2984

Ethanolamine 3.13 (t), 3.83 (t) 0.1699 0.1313 0.1381

Fumarate 6.51 (s) 0.0826 0.0545 0.0670

Glucose 3.65–3.92 (m), 5.22 (d), 4.63 (d) 3.6931 4.1924 2.8540

Glutamate 2.04 (m), 2.13 (m), 2.33 (m), 3.36 (m) 0.9006 0.7732 0.9592

Glutamine 2.11 (m), 2.14 (m), 2.42 (m), 2.46 (m) 3.76 (t) 3.8839 2.4603 2.6230

Isoleucine 0.92 (t), 1.00 (d), 1.24 (m) 1.45 (m) 0.2511 0.1446 0.1848

Leucine 0.94 (d), 0.95 (d) 1.71 (m), 3.73 (m) 0.5503 0.3288 0.3505

Malate 2.41 (dd), 2.69 (dd), 4.33 (dd) 0.8298 2.1772 2.7428

myo-Inositol 3.27 (t), 3.53 (dd), 3.62 (t), 4.05 (t) 0.0496 0.0190 0.0203

Phosphocholine 3.21 (s) 0.2421 0.1788 0.1930

Phenylalanine 7.33 (d), 7.37 (m), 7.43 (m) 0.3864 0.2516 0.2930

Proline 2.00 (m), 2.34(m), 3.32 (m), 3.41(m), 4.12 (dd) 74.8584 76.3855 72.9590

Glycerophosphocholine 3.21 (s) 0.2714 0.2534 0.3033

Sucrose 5.40 (d), 4.20 (d), 4.03 (t), 3.88 (m), 3.82 (m), 3.75 (t), 3.67 
(s), 3.65 (s), 3.54 (dd), 3.46 (t)

0.2434 0.2339 0.2893

Threonine 1.32 (d), 3.57 (d), 4.25 (m) 0.3300 0.1979 0.2336

Tyrosine 6.89(d), 7.18 (d) 1.8735 1.2515 1.6550

Valine 0.98 (d), 1.03 (d), 2.26 (m) 0.2577 0.1861 0.2007

Table 2  Classification report of  classification model (a) 
Partial least squares discriminant analysis (PLS-DA) model 
(b) Deep neural network (DNN) model

Label Precision (%) Recall (%) F1-score (%)

(a) PLS-DA

 4 years 94.1 96.0 95.0

 5 years 76.5 86.7 81.2

 6 years 87.1 75.0 80.6

 Weighted avg 87.4 87.1 87.0

(b) Deep learning

 4 years 96.2 100 98.1

 5 years 93.1 90.0 91.5

 6 years 91.4 88.8 90.1

 Weighted avg 93.9 93.9 93.9
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Results and discussion
Total 385 ginseng samples were measured by 1H high-
resolution magic angle spinning (HR-MAS) nuclear 
magnetic resonance (NMR) spectroscopy. By using 
HR-MAS NMR spectroscopy, the easy sample prepara-
tion without extraction process and the short analysis 
time are possible. Therefore, minimal sampling process 
allows to minimize the handling variations in sample 
preparation process. Representative 1H-NMR spectra 
are shown in Fig.  3. They reflect individual metabo-
lites of ginseng measured by HR-MAS NMR spectros-
copy. And metabolites in the spectra were assigned 
and quantified using Chenomx NMR Suite 7.1 profes-
sional and 2D COSY spectra which provide the infor-
mation of spin–spin coupling between protons (Fig. 4) 

[23]. Metabolites in each spectrum were identified and 
quantified by targeted analysis (Table 1). However, this 
approach is time-consuming and costly for a routine 
use in the quality control of ginseng. Therefore, we 
focused on a non-targeted analysis such as PLS-DA 
and deep learning to compare the patterns of the entire 
spectra. Since this approach compares the calculated 
values by digitizing the spectra, subjective interpreta-
tion can be excluded and a large amount of data can be 
handled simultaneously.

Classification report (Table 2) and confusion matrix 
(Fig.  5) were carried out using scikit-learn 0.19.2 [24] 
to show performance of classification models. The 
accuracy of the PLS-DA model when used to dis-
tinguish between 4-, 5-, and 6-year-old ginseng was 
87.1%. Table  2a shows the classification report of the 
PLS-DA model. The classification report included 
the precision, recall, and F1 score for each class of the 
test dataset. The precision is the fraction of true posi-
tives among the total predicted positive observations. 
The recall is the fraction of true positives within all 
observations of relevant instances. The F1 score is a 
harmonic average of the precision and recall; the opti-
mum F1 score is 100%. In the PLS-DA model, the val-
ues of precision, recall, and F1 score for the 4-year-old 
ginseng sample were better than for the 5- and 6-year-
old ginseng samples. The weighted average values 
for all classes were 87.4% precision, 87.1% recall, and 
87.0% F1 score. Figure 5a shows the confusion matrix 
of the PLS-DA model. The confusion matrix provides 
an evaluation of the quality of the output of a classifi-
cation model for the ginseng test dataset. The diagonal 
elements represent the number of values for which the 
predicted class is equal to the true class, whereas off-
diagonal elements are those that are mislabeled by the 
classification model. The higher the diagonal values, 
the more accurate the predictions are. The accuracy of 
the DNN model was 93.9%. In DNN model (Table 2b), 
the values of precision, recall, and F1 score for the 
4-year-old ginseng sample were better than for the 5- 
and 6-year-old ginseng samples. The average values 
for all classes were 93.9% precision, 93.9% recall, and 
93.9% F1 score. Figure 5b shows the confusion matrix 
for the DNN model. Compared to the PLS-DA model, 
all classification report values were higher in the DNN 
model. Therefore, the DNN model achieved a higher 
classification result than the PLS-DA model. Previous 
studies conducted multivariate statistical analyses with 
NMR data for discrimination of ginseng ages, and the 
ginseng samples were extracted with the solvent con-
sisted of methanol and water [5–7]. As in our study, 
when comparing the 4 to 6-year old ginseng that are 

Fig. 5  Confusion matrix of classification model. a Partial least squares 
discriminant analysis (PLS-DA) model. b Deep neural network (DNN) 
model



Page 7 of 8Lee et al. Appl Biol Chem           (2020) 63:64 	

most widely distributed on the market, it was found 
that the discriminant rate was not high compared to 
the overall discriminant rate in their papers. This 
study was able to further increase the discrimination 
rate, which was low in the PLS-DA model, by using the 
DNN model, even though the variation between sam-
ples with varying regions and harvesting times.

These results demonstrate that HR-MAS NMR spec-
troscopy with deep learning, which achieved a higher 
classification result than the PLS-DA, might be useful 
model for the classification of ginseng cultivation age. 
The schematic workflow for the classification of gin-
seng cultivation age using HR-MAS NMR Spectroscopy 
with deep learning is shown in Fig.  6. In the present 

study, the number of ginseng datasets were relatively 
small, which might have caused increased overfitting 
in the classification models. A limited number of train-
ing datasets compared to the number of learnable vari-
ables can lead to overfitting. This is a major challenge in 
training models. Nevertheless, we obtained an encour-
aging result by applying dropout, batch normalization, 
and model checkpoint to prevent overfitting. It is pos-
sible to improve the classification capability by using 
more datasets. Moreover, by using HR-MAS NMR, we 
were able to reduce the sampling variation and achieve 
reproducibility. Furthermore, samples from two dif-
ferent cultivation areas and three different harvesting 
years helped to improve the reliability of the results in 
classifying ginseng cultivation age.

Fig. 6  The schematic workflow for the classification of ginseng cultivation age. Powdered ginseng samples were analysed using HR-MAS NMR. And 
acquired 1H NMR spectra were preprocessed. After data preprocessed, deep learning was used to make a prediction model for classifying ginseng 
cultivation age. When new data is available, deep learning model is retrained and updated
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