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Abstract 

The chemical or metabolic compositions of tea (Camellia sinensis) varies according to numerous factors, such as geo‑
graphical origin, cultivar, climate, plucking position, and horticultural practices. However, how the age of tea plants 
affects the metabolite compositions of tea leaves has not been reported yet. Therefore, we extended the metabo‑
lomic approach to the investigation of the age-related differences of tea leaf metabolites in the fresh leaves collected 
from tea plants aged 8 and 25 years. Multivariate statistical analysis with comprehensive metabolite profiles analyzed 
by 1H NMR spectroscopy showed the clear metabolic differentiation between the fresh tea leaves from different ages 
of the tea plants. Of the various tea leaf metabolites varied according to the age of the tea plants, theanine, glu‑
tamine, catechin, and gallocatechin were uniquely dependent on the age of tea plants, demonstrating a difference 
of theanine metabolism between young and old tea plants. These results suggest that leaves from 25-year-old tea 
plants would still be worthy as a functional ingredient for the production in the food or cosmetic industry rather than 
quality-enhanced tea infusions for human consumption.
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Introduction
Tea is one of the most widely consumed beverages in 
the world. The five types of teas, such as black, oolong, 
green, white, and pu-erh teas, are commonly available in 
the market, in which tea leaves are the typical ingredi-
ents [1, 2]. Tea has been known to have health benefits 
such as reduced cancer risk [3], neuroprotective effects 
[4], and anti-inflammatory activity with compounds 
rich in polyphenols, catechin and its derivatives, caffeine 
and theanine, and minor compounds, including amino 
acids, theaflavins, and thearubigins [5]. In addition to 
health benefits, modern cosmetic industries use tea as an 

ingredient for improving the quality of cosmetics prod-
ucts, usually termed ‘cosmeceuticals’ [6].

The tea plant is a perennial and economic crop with 
a productive lifespan that can range up to 100 years [7]. 
Several studies stressed the importance of peak tea yields 
and their low productive-driver reasons. For example, the 
effects of a tea plant’s genotype and environment, man-
agement practices, and the interactions between the fac-
tors [8] on productivity have been reported, as well as the 
effect of tea plant age [9]. Notably, the age of tea plants 
has a substantial effect on tea yield and peak yields, 
which are optimum between the ages of 20 and 40 years 
and then decline afterward [10]. Therefore, the age of tea 
plants may be a topic of immense interest for research on 
the chemical composition of the tea leaf.

Metabolomic approaches have been reported as use-
ful and promising tools to examine the changes in global 
metabolites of tea plants and potentially provide a better 
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physiological understanding of the biochemical and cel-
lular events [11, 12]. For instance, a recent proton nuclear 
magnetic resonance (1H NMR) based global metabolic 
profiling study with green tea demonstrated that the 
tea metabolome was clearly dependent on growing area 
and hence was influenced by climatic conditions [13]. 
Moreover, a direct association between tea leaf metabo-
lites and environmental factors, such as plucking seasons 
and climate variables, has been characterized by a 1H 
NMR-based metabolomics approach [14]. Furthermore, 
a metabolomic approach revealed the metabolic depend-
ence of tea leaves on plucking positions [15]. Although 
1H NMR-based metabolomic study with different types 
of teas provides much useful information for producing 
distinct tea products, the distinctions of tea leaf metabo-
lites according to the age of tea plants remains unknown. 
Therefore, in the present study, we explored the age-
related differences in tea metabolites in the fresh leaves 
collected from tea plants aged 8 and 25 years through 1H 
NMR-based metabolomics approach.

Materials and methods
Origin of tea samples
Tea plants (Camellia sinensis var. Yabukita) of two dif-
ferent ages (8- and 25-year-old) analyzed in this study 
were grown at the same tea garden located in Seogwang 
(33° 18ʹ 17.67ʺ N, 126° 17ʹ 42.97ʺ E), Jeju-do, Republic of 
Korea. Fresh tea leaves were plucked at ten different par-
cels on May 14, 2015, and April 24, 2016, immediately 
kept in dry ice, sent to Chonnam National University 
(CNU, Republic of Korea), and stored at − 80  °C until 
further analysis.

Extraction of tea samples
Tea leaves were extracted according to the protocol 
explained in the previously published article [16]. The 
frozen tea leaves without stems were ground with a mor-
tar and pestle under liquid nitrogen. The ground tea 
was transferred into a plastic tube with a spatula and 
freeze-dried at − 80 °C for 48 h. Then freeze-dried sam-
ples of 10 mg were dissolved in a mixture of methanol-
d4 (CD3OD, 490 μL) and deuterium water (D2O, 210 μL) 
in 1.5  mL Eppendorf tubes. After that, the mixture was 
sonicated at 25 °C for 20 min followed by centrifugation 
at 13,000 rpm for 15 min at 10 °C. The resultant superna-
tants were transferred to 5-mm NMR tubes.

1H NMR spectroscopic analysis of tea extracts
For 1H NMR spectroscopic analysis, 550 µL of the super-
natant was transferred into 5-mm NMR tubes, and a 1H 
NMR spectrum was acquired on a Bruker Avance 700 
spectrometer (Bruker Biospin, Rheinstetten, Germany) 

operating at 700.40  MHz 1H frequency and a tem-
perature of 298  K, equipped with a cryogenic triple-
resonance probe and a Bruker automatic injector. A 
one-dimensional (1D) NMR spectrum of tea leaf extract 
was acquired with the 1D nuclear Overhauser effect 
spectrometry (NOESY) pulse sequence with water pre-
saturation. The signal assignment of the tea leaf extract 
was facilitated by two-dimensional (2D) total correlation 
spectroscopy (TOCSY), heteronuclear single quantum 
correlation (HSQC), spiking experiments with reference 
compounds, and comparisons of chemical shifts reported 
in previous work or a database. Furthermore, one-
dimensional statistical total correlation spectroscopy 
(STOCSY) [17] was also used for the signal assignment.

NMR data processing and multivariate statistical analysis
All 1H NMR spectra derived from tea leaf extracts were 
corrected manually for the phase and baseline distortions 
using TOPSPIN software (Version 4.04, Bruker BioSpin, 
Rheinstetten, Germany), converted to ASCII format, 
and then imported into MATLAB (R2010b; The Math-
works, Inc., Natick, MA). The icoshift method [18] was 
applied to align the 1D NMR spectra in full resolution. 
After the alignment of the 1D NMR spectra, regions of 
the NMR spectra corresponding to the solvent metha-
nol (3.36–3.40 ppm) and residual water (4.80–4.90 ppm) 
were removed. Probabilistic quotient normalization of 
the spectra using the median spectrum was carried out 
after total integral normalization to avoid dilution effects 
of samples and effects of metabolites [19]. The resultant 
datasets were then imported into SIMCA-P version 14.0 
(Umetrics, Umeå, Sweden) and applied to a mean center-
ing scaling method for multivariate statistical analysis. 
First, the principal component analysis (PCA), an unsu-
pervised pattern recognition method, was performed to 
examine intrinsic variation in the dataset. After that, a 
supervised pattern recognition method, orthogonal pro-
jection on latent structure-discriminant analysis (OPLS-
DA) [20] was used to extract maximum information on 
discriminant compounds from the spectra. An in-house 
MATLAB script developed by Imperial College Lon-
don, UK, was used for pairwise comparison between two 
groups of classes in OPLS-DA loading plots, in which 
the loading plots corresponding to the correlation coef-
ficients between variables and classes were combined by 
back-transformed loading together with variable weights. 
A color code visualized the concentration differences and 
discrimination weights between the classes in the OPLS-
DA model that corresponds to the square correlation 
coefficient in the OPLS-DA loadings as described by [21]. 
A permutation test of 200 times repetitions along with 
seven-fold cross-validation was performed to validate the 
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OPLS-DA model. The Q2 values generated from the per-
mutation test were compared to the Q2 values of the real 
model. If the maximum value of Q2 from the permuta-
tion test was smaller than the Q2 of the real model, the 
model was considered to be a predictable model. R2X 
was used to evaluate possible overfitting of the model. 
Hence, the quality of the models is described by R2X and 
Q2 values. R2X is defined as the proportion of variance 
in the data explained by the models and indicates good-
ness of fit, and Q2 is defined as the proportion of vari-
ance in the data predictable by the model and indicates 
predictability.

Statistical analysis
Statistical analyses of the data were conducted using the 
software package SPSS (IBM SPSS Statistics ver. 23; SPSS 
Corp., USA). Significance in the relative contents of tea 
leaf metabolites was evaluated by one-way analysis of 
variance (ANOVA) followed by Duncan’s multiple-range 
test. A probabilistic value of P < 0.05 was considered to 
be statistically significant. The integral area of the peaks 
identified in 1D 1H NMR that corresponded to non-over-
lapped individual metabolites was examined to quan-
tify the relative comparisons of the levels of individual 
metabolites.

Fig. 1  Representative 1H 700 MHz NMR spectra of tea leaf extracts from 8-year-old (a) and 25-year-old (b) tea (C. sinensis) plants. The tea 
metabolites identified by 1H NMR spectroscopy include acetate, alanine, 2-O-(β-l-arabinopyranosyl)-myo-inositol (Ara), asparagine (Asn), aspartate 
(Asp), caffeine, catechin, choline, epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), epigallocatechin gallate (EGCG), fatty acids, 
γ-aminobutyric acid (GABA), gallate, gallocatechin (GC), α-glucose, β-glucose, glutamate (Glu), glutamine, quinate, sucrose, succinate, theanine, 
theobromine, theogallin, and threonine. S1, S2, and S3 were tentatively assigned as sugar compounds. Asterisks represent epigallocatechin 
3-O-(3″-O-methyl) gallate (EGCG3ʺMe)
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Results
1H NMR spectroscopic analysis of tea leaves
To understand the global metabolic dynamics in tea 
leaves as tea (C. sinensis) plants become aged, representa-
tive 1H NMR spectra of tea leaves collected from 8-year-
old (a) and 25-year-old (b) tea plants plucked in May 
2015 and April 2016, respectively, are shown in Fig.  1. 
The 1D 1H NMR spectra consisted of a diverse range of 
tea leaf metabolites, including acetate, alanine, 2-O-(β-l-
arabinopyranosyl)-myo-inositol (Ara), asparagine, aspar-
tate, caffeine, choline, fatty acids, gallate, γ-aminobutyric 
acid (GABA), α-glucose, β-glucose, glutamine, glutamate, 
quinate, sugars, sucrose, succinate, catechin, gallocatechin 
(GC), epicatechin (EC), epicatechin gallate (ECG), epigal-
locatechin (EGC), epigallocatechin gallate (EGCG), epi-
gallocatechin 3-O-(3″-O-methyl) gallate (EGCG3″Me), 
theanine, theobromine, theogallin, threonine, and valine. 
These tea leaf metabolites were assigned by spiking with 
the pure chemicals and also by comparing the data from 
the published literature [13–15, 22, 23]. The metabolites 
assignment was also validated by 2D TOCSY and HSQC 
NMR experiments, as described by previous studies [15, 
22]. Additional file  1: Table  S1 provides the chemical 
shifts of tea leaf metabolites and their corresponding mul-
tiplicity or coupling constant from tea leaves assigned by 
TOCSY and HSQC NMR experiments.

Metabolic differentiations of tea leaves according to plant 
age
A pattern recognition method by multivariate statisti-
cal analysis, such as principal component analysis (PCA) 
and orthogonal projection on latent structure-discrimi-
nant analysis (OPLS-DA), was employed for the entire 1H 
NMR dataset for visualizing the global differences in tea 
leaf metabolites according to age of tea plant. An unsu-
pervised PCA model was used to see the initial spectral 
features of the 1H NMR dataset and the metabolic rela-
tionships between tea samples. The PCA model showed 
the metabolic dependence of tea leaves on growing vin-
tage or year described by the first principle compo-
nent with 67.3% variations and on the age of tea plants 
explained by the second principal component with 9.83% 
(Fig. 2a). These metabolic dependences were more clear in 
the OPLS-DA model, as shown in Fig. 2b. The tea leaves 
collected in 2015 and 2016 were further differentiated in 
the corresponding OPLS-DA models, as shown in Fig. 2c, 
d, respectively, which demonstrated strong dependences 
of tea leaf metabolites on the age of tea plants.

Identification of tea leaf metabolites associated 
with the age of tea plants
A pairwise OPLS-DA model was generated with one 
predictive and one orthogonal component to identify the 

tea leaf metabolites responsible for metabolic differentia-
tions according to the age of the tea plants (Fig. 3). Clear 
differentiation between the tea samples of different ages 
was observed in all OPLS-DA score plots with a high 
predictability (Q2) and high goodness of fit (R2X), which 
accounted for 0.60 and 0.85 between the tea leaves of the 
8- and 25-year-old tea plants that were harvested in 2016 
(Fig. 3a), and 0.66 and 0.93 between the tea leaves of the 
8- and 25-year-old tea plants that were harvested in 2015 
(Fig.  3c). All these OPLS-DA models were validated by 
permutation tests (Additional file 1: Fig. S2). The upper 
sections of the OPLS-DA loading plots represent the tea 
leaf metabolites that were higher in the old tea plants 
than in the young tea plants, whereas the lower sections 
were characterized by lower contents of tea leaf metabo-
lites in the old tea plants (Fig. 3b, d). The different colors 
on the OPLS-DA loading plots explain the significant 
differences in metabolites responsible for differentia-
tions between the young and old tea plants, and a cor-
relation coefficient of the OPLS-DA plot greater than 
0.45 was considered to be significant, as described in 
our previous studies [15]. The OPLS-DA loading plot 
with tea leaves between 8- and 25-year-old tea plants 
collected in 2016 showed lower levels of alanine (Ala), 
2-O-(β-l-arabinopyranosyl)-myo-inositol (Ara), caffeine, 
epicatechin (EC), epigallocatechin (EGC), epigallocat-
echin 3-O-(3ʺ-O-methyl) gallate (EGCG3″Me), leucine, 
α-glucose, β-glucose, glutamine (Gln), quinate, succi-
nate, sucrose, theanine, theobromine in tea leaves from 
the 25-year-old tea plants (Fig. 3b). On the other hand, 
the tea leaf metabolites responsible for differentiations 
between 8- and 25-year-old tea plants plucked in 2015 
were identified in the OPLS-DA loading plot (Fig.  3d). 
Therefore, tea leaves collected from 25-year-old tea 
plants in 2015 were characterized by lower levels of ace-
tate, catechin, GABA, gallate, theanine, glutamine, and 
theogallin compared to 8-year-old tea plants (Fig.  3d). 
Quantitative differences of individual metabolites 
according to the age of tea plants were calculated from a 
total integral area of 1H NMR spectra corresponding to 
each metabolite (Fig. 4).

Discussion
Metabolomics has already unveiled the metabolic pro-
files of tea leaves (C. sinensis), which were perturbed 
according to several factors, including plucking positions 
and seasons, climates, cultivation conditions, and culti-
vars [11, 13, 14, 22, 23]. However, information about the 
global metabolite differences between tea leaves accord-
ing to the age of tea plants is very limited. Thus, in order 
to characterize the age-related metabolites in tea leaves, 
1H NMR-based metabolomics was employed with 8- and 
25-year-old tea plants collected in 2015 and 2016.
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Tea leaf metabolites associated with the age of tea plants 
were clearly different between 2015 and 2016, may be due 
to different plucking seasons of April in 2016 and May 
in 2015 (Fig.  3), even though the first harvest of the tea 
leaves is performed with unique criteria, such as amounts 
of total amino acids and the number of buds every year. 
Therefore, we speculate that the low rate of photosynthe-
sis and then limited carbohydrate metabolism in old tea 
plants during April 2016, which were indicated by reduced 
glucose and sucrose, might reduce the synthesis of other 
tea metabolites, such as alanine, succinate, glutamine, 
theanine, EC, EGC, catechin, caffeine, and theobromine. 
However, many of the tea leaf metabolites not differ 
between 8- and 25-year-old tea plants during May 2015, 
perhaps because of different climate conditions between 

April 2016 and May 2015. The associations between tea 
leaf metabolites and climate conditions in several years 
have been reported in our previous study [13].

Of the various tea leaf metabolites perturbed accord-
ing to the age of the tea plants, theanine, glutamine, cat-
echin, and gallocatechin were uniquely dependent on 
the age of the tea plants (Fig. 4). Theanine in tea plants is 
produced from glutamic acid and ethylamine in shoots 
and converted into catechins in leaves [24, 25]. Therefore, 
high accumulations of theanine, glutamine, a precur-
sor of glutamic acid, and catechin in leaves of young tea 
plants indicate reduced or lower metabolism of theanine 
in young tea plants than in old tea plants. On the other 
hand, these tea leaf metabolites would be highly metabo-
lized in old tea plants, as evidenced by a high accumulation 

Fig. 2  PCA (a) and OPLS-DA (b–d) score plots derived from 700 MHz 1H NMR spectra of tea leaf extracts obtained in May 2015 and April 2016, 
demonstrating a clear dependence of tea leaf metabolome on the age of tea plants
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of gallocatechin in leaves of old tea plants (Fig.  4P). The 
metabolite perturbations of tea leaves observed in different 
ages of tea plants in the current study should be distinct 
from those related to plucking positions because tea leaves 
collected according to plucking positions contain both 
young and old tea leaves [15]. For example, the first tea 
leaves of the five-tea leaf buds represent the youngest tea 
leaves, whereas the last tea leaves are the oldest tea leaves.

In conclusion, a unique metabolite marker in tea 
leaves to characterize old tea plants was found through 
a 1H NMR-based metabolomics approach with 8- 
and 25-year-old tea plants. The tea leaf metabolites, 

including theanine, glutamine, catechin and gallo-
catechin were strongly associated with the age of tea 
plants, demonstrating differences of theanine metabo-
lism between young and old tea plants. The current 
study to characterize global metabolite differences of 
old tea plants and then assess their quality suggests 
that old tea plants would still be worthwhile for pro-
ducing functional ingredients of various major cat-
echin compounds, such as EC, EGCG, EGC, ECG, 
and EGCG3″Me, because their metabolisms were not 
dependent on the age of the tea plants, even though 
there are low amounts of theanine in their leaves.

Fig. 3  The OPLS-DA score (a and c) and loading (b and d) plots derived from 1H NMR spectra of tea leaf extracts, providing a pairwise plot for 
metabolic comparison between tea plants aged 8 (8 y) and 25 (25 y) years old collected in April 2016 (a and b) and in May 2015 (c and d). In the 
loading plot (b and d), the upper section represents the higher levels of tea leaf metabolites in old tea plants compared to young tea plants, 
whereas the lower section denotes metabolites lower in old tea plants. The color code in the loading plot corresponds to the correlation between 
the variables. All OPLS-DA modes were generated with one predictive component and one orthogonal component and were validated by a 
permutation test (Additional file 1: Fig. S2). Ala, alanine; Ara, 2-O-(β-l-arabinopyranosyl)-myo-inositol; Asp, aspartic acid; EC, epicatechin; EGC, 
epigallocatechin; FA, fatty acids; GABA, γ-aminobutyric acid; GC, gallocatechin; Gln, glutamine; Val, valine. Asterisks represent epigallocatechin 
3-O-(3″-O-methyl) gallate (EGCG3ʺMe)
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Fig. 4  Relative changes or variations of individual metabolites of fresh tea leaves from 8- and 25-year-old tea plants (April 2016) and 8- and 
25-year-old tea plants (May 2015). Different small letters in the vertical graph bars of the leaves indicate significant differences between the samples, 
which were determined by Duncan’s multiple range test at P < 0.05. The error bars were based on ten samples. Ara, 2-O-(β-l-arabinopyranosyl)-
myo-inositol; GABA, γ-aminobutyrate; EC, epicatechin; ECG, epicatechin gallate; EGC, epigallocatechin; EGCG, epigallocatechin gallate; EGCG3ʺMe, 
epigallocatechin 3-O-(3″-O-methyl) gallate
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