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Abstract 

Corn (Zea mays L.) provides a major source of calories for human consumption and therefore, the nutritional compo‑
nents of corn have a large impact on human health. For example, corn kernels contain antioxidants, such as polyphe‑
nols (including anthocyanins and other flavonoids) and carotenoids. Such compounds represent useful targets for 
biofortification breeding. In this study, we used 34 corn inbred lines from three different regions (East Asia, Southern 
Asia, and subtropical regions) and 11 F1 hybrids derived from the inbreds to investigate antioxidant activity in yellow 
corn. We compared different methods for measuring antioxidant activity to test their consistency and to determine 
whether color could be used as an indicator of antioxidant activity. We also measured carotenoid levels in yellow corn. 
No difference in antioxidant activity was detected between inbred corn lines from temperate vs. tropical regions. We 
determined that carotenoid is a major contributor to antioxidant activity in yellow corn and that kernel color, espe‑
cially yellowness, could be used as an indicator of antioxidant activity in yellow corn. These findings lay the foundation 
for the biofortification of yellow corn by providing information about the correlations among kernel color, carotenoid 
contents, and antioxidant activity and by identifying an easy method to assess antioxidant activity in yellow corn.
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Introduction
Corn (maize; Zea mays L.) kernels contain nutritionally 
valuable antioxidants that benefit human health by reduc-
ing age-related disorders such as cardiovascular disease 
and cancer. However, much of the corn consumed world-
wide lacks high levels of key antioxidants such as the 
dark-colored anthocyanins, because many culinary tradi-
tions have a strong preference for yellow or white corn 
and therefore, most of the corn used as a staple food crop 

worldwide is yellow or white. People in countries that use 
corn as a staple food can have severe nutritional deficien-
cies such as blindness and anemia due to the insufficient 
uptake of essential minerals and vitamins, many of which 
are important antioxidants [1, 2]. Therefore, biofortifica-
tion to produce corn with improved antioxidant activities 
could be a solution for some severe nutrient deficien-
cies [3, 4]. Measuring the levels of various antioxidants 
in important locally adapted corn varieties provides key 
information for efforts to improve the antioxidant levels 
in corn. Moreover, establishing simple assays that corre-
late to antioxidant levels will facilitate these efforts [5].

Polyphenolic compounds include dark-colored pig-
ments such as anthocyanins and are major contributors 
to antioxidant activity in corn kernels; indeed, many 
studies on antioxidant activity in corn have focused on 
anthocyanins, which give corn a red or purple color [6, 7]. 
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Hu and Xu reported that purple kernels showed higher 
antioxidant activity than yellow kernels, but yellow ker-
nels also showed considerable and sometimes similar lev-
els of antioxidant activity [8]. Another study showed that 
white and yellow corn kernels have considerable amounts 
of antioxidant activity [6]. Other polyphenols, especially 
ferulic acid, are thought to be major contributors to the 
antioxidant activity of yellow sweet corn when the corn is 
processed at 115 °C [9].

Carotenoids, another source of antioxidant activity 
in corn, provide kernels with their yellow color. Various 
types of carotenoids have been identified in corn kernels 
[10–12]. For example, β-carotene and β-cryptoxanthin 
have vitamin A activity, functioning as retinal pigments. 
Lycopene, a red pigment, has excellent health benefits by 
reducing coronary heart diseases. Lutein and zeaxantin 
also function as retinal pigments, thereby reducing blind-
ness in elderly people [13].

In the current study, we used inbred lines from three 
different regions to investigate the antioxidant activity of 
yellow corn. The aims of this study were to (i) identify an 
appropriate method for measuring antioxidant activity in 
yellow corn kernels; (ii) determine whether antioxidant 
activity can be estimated based on the visual inspection 
of kernel color; and (iii) examine whether carotenoid is 
the major determinant of antioxidant activity in yellow 
corn.

Materials and methods
Plant materials
Eight Korean elite inbred lines, 16 Vietnamese elite lines, 
10 CIMMYT lines (CMLs), and 11 F1 hybrids (includ-
ing two hybrids between Korean inbred lines and nine 
hybrids between KS140 and CMLs) were used for analy-
sis. The two hybrids between Korean inbred lines Shin-
wangok and Hwandaok are cultivars developed by 
the National Institute of Crop Science, Korea [14, 15]. 
All kernel samples were harvested from corn grown 
in the field at the NICS, Suwon, Korea (37°15′47″N, 
126°59′16″E) in 2019 with field preparation performed as 
previously described [16].

Extraction of antioxidants and phenolics
Two grams of powered samples were mixed with 10 ml 
of 80% EtOH. The mixture was incubated at 25  °C for 
24 h with 150 rpm shaking in dark. After incubation, the 
supernatants were collected after 10 min at 10,000  ×  g. 
The remaining sediment was mixed with another 10 ml 
of 80% EtOH and extracted in the same way. The super-
natants were combined and filtered through Whatman 
No. 42 filter paper, and used for the following antioxidant 
activity and phenolic assays.

Quantification of total polyphenols
The Folin-Ciocalteu method was used for quantitation 
of total polyphenols [17]. Sample extracts (0.5 mL vol-
ume) were mixed with 5  mL distilled water and 5  mL 
Folin-Ciocalteu phenol reagent for 3 min. After adding 
2 mL 10% Na2CO3, the mixture was stirred in a shaker 
chamber at 30  °C for 1  h. Absorbance at 760  nm was 
measured with a spectrophotometer (U-3900 Hitachi, 
Tokyo, Japan). A standard curve of 1–100  ppm gallic 
acid (Sigma Aldrich, MO, USA) was used for quan-
tification. The results were expressed as µg gallic acid 
equivalents g−1 dry weight (DW).

Measuring flavonoid contents
Total flavonoid contents were determined by adding 
1  mL triple-distilled water and 75  μL 5% NaNO2 to 
250  μL extract, followed by 150  μL 10% AlCl3·6H2O 
after 5  min and 500  μL 1  N NaOH after 6  min and 
measuring the absorbance at 510  nm with a spec-
trophotometer (U-3900 Hitachi, Tokyo, Japan) [9]. 
A standard curve was generated using (+)-catechin 
(Sigma Aldrich, MO, USA). The results were presented 
as µg catechin equivalents g−1 DW.

DPPH assay
The DPPH assay was performed as described previously 
[18]. Each extract (0.2  mL) was mixed with 2.5  mL 
DPPH (Sigma Aldrich, MO, USA) solution (0.35  mM 
DPPH dissolved in 50% ethanol) and incubated for 
10  min at room temperature. The changes in absorb-
ance at 517 nm were measured, and antioxidant activ-
ity was calculated as the percent inhibition caused by 
hydrogen donor activity. The results were expressed as 
µmol Trolox equivalents g−1 DW based on a standard 
curve generated with Trolox solution (100–1000 μM).

ABTS assay
The reduced radical cation of 2,2ʹ-azinobis (3-ethylb-
enzothiazoline-6-sulfonic acid) (ABTS+) was measured 
as previously described [8, 18]. Briefly, ABTS+ was gen-
erated by reacting 7  mM ABTS with 2.45  mM potas-
sium persulfate. The reaction mixture was incubated 
in the dark at 24 °C for 1–2 days. Samples were diluted 
within a range of 20–80% inhibition of the blank. Each 
diluted extract (50 μL) was mixed with 1.9 mL diluted 
ABTS+ solution and incubated for 6 min at 24 °C before 
measuring the absorbance at 734 nm. The results were 
expressed as µmol Trolox equivalents g−1 DW based on 
a standard curve generated with Trolox solution.



Page 3 of 8Bae et al. Appl Biol Chem           (2021) 64:56 	

Measuring carotenoid contents
Total carotenoid content was measured according to 
Al-Frarsi et  al. [19] with slight modifications. Freeze-
dried kernels were ground to a powder with a cof-
fee grinder and sifted through a 100-mesh screen. 
Extraction was performed using 2 g of sample powder 
and 25  mL of acetone/ethanol (1:1, v/v) containing 
200  mg  L−1 butylated hydroxytoluene. The resulting 
extract was centrifuged for 10  min at 4  °C, 10,000×g. 
The supernatant was filtered through Whatman No. 42 
filter paper and measured with a spectrophotometer 
(U-3900 Hitachi, Tokyo, Japan) at 470  nm. The carot-
enoid contents were calculated with the following for-
mula: Total carotenoid contents (mg g−1)  =  (A470  ×  V  
×  106)/(A1%  ×  100  ×  G), where A470 is the absorbance 
at 470 nm, V is the volume of extract, A1% is 2500 (the 
extinction coefficient for a 1% mixture of carotenoid), 
and G is the sample weight (g).

Colorimetric analysis
Kernel color was determined with an L, a, and b color-
imeter (CR-200 Minolta, Tokyo, Japan). The colorimeter 
was calibrated using the manufacturer’s standard white 
plate. The center of the abgerminal side of the kernel was 
measured. Six kernels per genotype were measured, and 
the mean values were used for correlation analysis. The 
colors are represented as L, a, and b values, i.e., lightness, 
red-green, and blue-yellow, respectively.

Statistical analysis
All measurements were conducted in triplicate from 
three different ear samples. The data obtained from 
these assays were analyzed for correlation coefficient 
and ANOVA followed by post hoc analysis using Excel 
(Microsoft Office 2016, USA) and SAS software version 
9.3 for Windows (SAS Institute Inc., USA), respectively. 
A web-based analysis program (www.​metab​oanal​yst.​ca) 
was used for PCA.

Results and discussion
Color properties of corn kernels
To broadly sample corn varieties from different geo-
graphic and climatic regions [East Asia, Southern Asia, 
and subtropical regions (Central America)] and examine 
the behavior of antioxidant-related traits in hybrids, we 
examined 8 elite Korean inbred lines, 16 elite Vietnamese 
lines, 10 CIMMYT (Centro Internacional de Mejorami-
ento de Maíz y Trigo, Mexico) lines (CMLs), and 11 F1 
hybrids. The corn lines used in this study typically have 
yellow or white kernels (Fig.  1). We characterized ker-
nel color by recording L (lightness), a (red-green), and 
b (blue-yellow) values with a colorimeter. The L, a, and 

b values ranged from 63.10 to 83.07, 0.45 to 20.22, and 
22.90 to 58.71, respectively. L and a values showed a 
strong negative correlation (r2  =  0.865; Fig. 1F), whereas 
a and b values showed a positive correlation (r2  =  0.206; 
Fig.  1E). These values reflected the color characteristics 
of the corn materials used in this study.

When we compared color values in corn from different 
geographic locations, the Korean lines and Vietnamese 
lines shared similar color ranges, whereas the CIMMYT 
lines (CMLs) tended to have lighter kernels, as the CMLs 
had higher L values and lower a and b values than the 
other corn lines (p  <  0 0.01; Fig. 1B–D). Kernel color has 
been used to estimate carotenoid contents in previous 
studies [20, 21]. Analysis of the variation in color values 
of the samples and their clear correlations reveal the con-
sistency among the color values of the corn samples.

Antioxidant activities of yellow corn
We examined antioxidant activity in kernels by three 
methods: 2,2’-azino-bis(3-ethylbenzothiazoline-6-sul-
fonic acid) (ABTS) radical scavenging activity, 1,1-diphe-
nyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 
and measurement of polyphenol contents. In addition, 
we measured total flavonoid contents in the kernels 
(Table 1). The values from all samples were compared via 
principal component analysis (PCA) (Fig.  2). Flavonoid 
and polyphenol contents, and ABTS and DPPH activities 
showed similar directions in the analysis, whereas carot-
enoid contents showed a different direction in the PCA 
(Fig. 2B). The first two components of the PCA explained 
79.3% of the total variance of the dataset (Fig.  2A). The 
inbred lines from three different locations were randomly 
dispersed in the score plot, indicating that geographic 
origin had little effect on antioxidant activity. Most of the 
inbreds showed consistency among biological replicates. 
14K28 and CML177 showed the highest antioxidant 
activity among Vietnamese lines and CMLs, respectively 
(Fig. 2A).

Vietnamese lines are generally more diverse than the 
Korean lines and CMLs, based on their positions in the 
score plot. 14K9 and CL17 showed variation among indi-
viduals in the direction of carotenoid content. Korean 
lines were located close to the center, and KS showed less 
genetic variation in terms of antioxidant activities and 
carotenoid contents. The CMLs showed less variation 
among individuals than the Vietnamese lines (Fig. 2A).

Effect of hybridization on antioxidant activities
We obtained 11 F1 hybrids, including 2 from crosses 
between KS lines and 9 from crosses between KS140 and 
CMLs. Both Korean F1 hybrids tended to have reduced 
antioxidant activity compared to their parents. Most 
hybrids between KS140 and the CMLs also showed a 

http://www.metaboanalyst.ca
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clear tendency to have reduced antioxidant activity based 
on their placement in the PCA score plot (Fig. 3). The five 
components showed similar patterns in the loading plots, 
in which carotenoid loaded in a different direction than 

the others (Fig. 3B). The tendency for a general reduction 
in antioxidant activity among hybrids suggested that the 
yellow inbreds examined lack dominant useful alleles for 
higher antioxidant activity. However, these observations 
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Fig. 1  Color phenotypes of kernels of the corn lines used in this study. A Three abgerminal and three germinal sides of representative kernels are 
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also suggest that antioxidant activities of yellow and 
white corn can be greatly improved by sophisticated 
breeding strategies.

Correlations among antioxidant measurement methods 
and carotenoid contents
In general, antioxidant activities did not differ among 
samples from different geographic locations. Only 
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Table 1  Antioxidant contents of corn samples analyzed in this study

a µg gallic acid equivalents g−1 DW
b µg catechin equivalents g−1 DW
c µmol Trolox equivalents g−1 DW

Line Type Source Polyphenol (μg g−1)a Flavonoid (μg g−1)b DPPH (μmol g−1)c ABTS (μmol g−1)c Carotenoid (mg g−1)

KS85 Dent NICS 1846.9  ±  8.2 454.0  ±  33.5 223.0  ±  11.2 364.1  ±  8.2 1.20  ±  0.33

KS124 Dent NICS 1873.5  ±  14.2 360.5  ±  13.9 239.2  ±  0.5 361.5  ±  1.9 4.00  ±  0.33

KS140 Flint NICS 1335.4  ±  4.0 184.2  ±  3.1 171.8  ±  4.4 299.4  ±  2.1 3.07  ±  0.19

KS141 Flint NICS 1511.6  ±  7.1 200.1  ±  5.5 176.4  ±  2.7 332.0  ±  1.3 0.00  ±  0.00

KS145 Dent NICS 2384.7  ±  8.1 260.9  ±  22.0 124.3  ±  3.5 454.8  ±  0.4 1.07  ±  0.19

KS178 Dent NICS 1863.5  ±  90.3 194.5  ±  8.4 138.3  ±  1.4 375.0  ±  1.0 1.33  ±  0.19

KS190 Dent NICS 1876.3  ±  16.1 395.9  ±  11.3 206.3  ±  5.3 336.1  ±  2.4 3.20  ±  0.00

KS203 Dent NICS 1690.7  ±  4.0 313.4  ±  16.5 206.5  ±  4.5 351.3  ±  3.0 2.80  ±  0.33

14K9 Flint VLM 2115.1  ±  10.7 290.4  ±  19.6 242.4  ±  1.5 381.1  ±  3.3 6.93  ±  1.32

14K16 Flint VLM 1713.8  ±  89.4 412.8  ±  8.4 188.1  ±  3.0 349.9  ±  4.8 5.47  ±  0.68

14K28 Flint VLM 2706.3  ±  31.1 418.9  ±  89.3 316.4  ±  2.1 474.1  ±  1.5 5.60  ±  0.00

CL5 Flint VLM 2590.4  ±  17.8 330.5  ±  30.3 278.7  ±  3.6 445.1  ±  2.0 3.73  ±  0.50

CL9 Flint VLM 2079.0  ±  26.8 217.4  ±  5.5 252.0  ±  4.6 425.2  ±  5.9 1.73  ±  0.19

CL13 Flint VLM 2296.4  ±  35.1 266.3  ±  24.4 258.6  ±  4.6 437.8  ±  3.6 4.00  ±  0.57

CL15 Flint VLM 1420.8  ±  18.6 130.1  ±  6.3 155.9  ±  2.4 300.7  ±  1.9 3.20  ±  0.00

CL16 Flint VLM 1184.1  ±  6.9 75.7  ±  6.2 126.4  ±  5.1 257.7  ±  3.8 2.80  ±  0.33

CL17 Flint VLM 1537.0  ±  4.0 142.7  ±  5.4 162.1  ±  3.8 312.5  ±  3.4 4.67  ±  2.29

CL30 Flint VLM 1853.7  ±  73.3 206.6  ±  25.6 214.2  ±  3.0 391.5  ±  1.0 3.33  ±  0.19

CL32 Flint VLM 1451.0  ±  33.0 100.5 ±  0.0 168.1  ±  2.0 322.7  ±  1.0 2.40  ±  0.00

CL35 Flint VLM 2647.3  ±  39.1 346.4  ±  32.7 322.7  ±  3.0 464.0  ±  1.1 3.47  ±  0.19

CL54 Flint VLM 1962.7  ±  84.3 141.2  ±  9.6 270.4  ±  5.1 415.9  ±  1.8 4.67  ±  0.38

CL55 Flint VLM 1431.1  ±  22.9 154.1  ±  6.4 177.3  ±  0.7 313.7  ±  6.1 2.40  ±  0.33

CL56 Flint VLM 2174.0  ±  70.7 232.8  ±  22.6 227.9  ±  1.6 401.9  ±  3.0 5.20  ±  0.33

CL57 Flint VLM 1738.7  ±  112.9 74.7  ±  11.1 167.7  ±  1.9 357.7  ±  5.3 2.13  ±  0.19

CML157 Flint CIMMYT 2103.3  ±  12.3 591.5  ±  3.2 250.4  ±  1.0 366.3  ±  3.8 1.07  ±  0.19

CML164 Flint CIMMYT 1896.1  ±  17.7 199.3  ±  0.0 212.2  ±  1.6 339.4  ±  1.0 3.20  ±  0.00

CML170 Flint CIMMYT 1990.4  ±  18.0 228.6  ±  3.2 242.8  ±  1.0 333.2  ±  2.7 2.67  ±  0.19

CML177 Flint CIMMYT 2992.4  ±  41.0 277.3  ±  37.6 313.4  ±  1.3 451.1  ±  1.7 0.40  ±  0.00

CML180 Flint CIMMYT 1593.4  ±  30.1 113.9  ±  16.4 149.7  ±  0.5 288.5  ±  2.5 0.40  ±  0.33

CML181 Flint CIMMYT 1741.5  ±  4.1 108.2  ±  9.6 170.4  ±  1.8 322.7  ±  3.3 0.27  ±  0.19

CML188 Flint CIMMYT 2189.1  ±  10.7 95.8  ±  16.4 199.2  ±  0.5 413.3  ±  2.6 1.20  ±  0.57

CML191 Flint CIMMYT 1684.1  ±  22.6 152.5  ±  3.2 187.8  ±  2.9 325.7  ±  2.8 2.93  ±  0.94

CML529 Flint CIMMYT 1833.9  ±  21.5 163.0  ±  8.3 199.9  ±  2.6 312.3  ±  1.5 2.67  ±  0.68

CML557 Flint CIMMYT 2498.2  ±  4.1 198.5  ±  3.2 242.4  ±  2.4 389.7  ±  1.3 2.27  ±  0.19

KS140/CML157 Flint F1 1281.3  ±  10.8 74.3  ±  19.1 116.3  ±  2.3 309.5  ±  0.7 1.20  ±  0.00

KS140/CML164 Flint F1 1501.2  ±  25.4 97.6  ±  6.3 133.9  ±  2.9 340.3  ±  7.4 3.20  ±  0.33

KS140/CML170 Flint F1 1370.3  ±  18.0 117.5  ±  6.4 135.9  ±  4.0 327.4  ±  1.8 3.20  ±  0.00

KS140/CML177 Flint F1 1436.2  ±  8.2 113.0  ±  19.1 135.8  ±  3.8 320.4  ±  0.7 0.93  ±  0.19

KS140/CML180 Flint F1 1370.0  ±  29.4 83.3  ±  6.3 118.1  ±  4.1 326.9  ±  3.2 1.60  ±  0.33

KS140/CML181 Flint F1 1427.8  ±  31.1 91.4  ±  5.5 104.1  ±  5.4 326.1  ±  4.0 1.33  ±  0.38

KS140/CML188 Flint F1 1565.4  ±  4.1 113.4  ±  14.6 129.1  ±  4.5 336.7  ±  2.1 1.87  ±  0.38

KS140/CML191 Flint F1 1466.9  ±  28.2 138.5  ±  19.6 137.2  ±  4.4 334.4  ±  5.8 2.00  ±  0.33

KS140/CML529 Flint F1 1499.8  ±  8.2 102.7  ±  14.7 131.4  ±  4.4 324.3  ±  2.9 0.27  ±  0.38

Sinhwangok 
(KS178/145)

Dent F1 1549.3  ±  10.8 118.3  ±  5.5 110.6  ±  3.5 342.4  ±  1.3 2.13  ±  0.19

Hwangdaok 
(KS203/190)

Dent F1 1775.5  ±  54.4 128.4  ±  12.8 101.3  ±  5.3 371.8  ±  1.9 3.47  ±  0.50
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carotenoid contents significantly differed between sam-
ples from Vietnamese lines and CMLs (p  <  0.005; Fig. 4). 
By contrast, F1 hybrids showed significant differences in 
flavonoid and carotenoid contents, and DPPH activity 
for at least one of the samples from different geographic 
regions (Fig. 4).

Correlation analysis of the results obtained using dif-
ferent methods to measure antioxidant activity revealed 
high correlation coefficients, confirming the reliability of 
the different methods. DPPH and ABTS activities showed 
higher correlation coefficients with polyphenol contents 
(0.667 and 0.806, respectively) than flavonoid contents 
(0.444 and 0.243, respectively). A relatively weak correla-
tion was observed for carotenoid contents (Table 2).

We then analyzed the correlation coefficients between 
antioxidant activities and color values. Polyphenol con-
tents showed significant correlations with b values and 
carotenoid contents with a values (Table  3). Therefore, 
the a (green/red) and b (blue/yellow) color values of 
the kernels could be used as indicators of carotenoid 

contents and polyphenol contents, respectively. In purple 
waxy corn, kernel color is thought to reflect anthocyanin 
levels [16]. Lower correlation coefficients could be caused 
by the greater genetic diversity of the corn samples exam-
ined in this study.

Furthermore, carotenoid color can be divided into the 
redness and yellowness of the kernel. Kernel color values 
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Fig. 4  Boxplots of antioxidant activities and carotenoid contents of corn samples based on geographic location, including polyphenols (A), 
flavonoid (B), DPPH (C), ABTS (D), and carotenoid contents (E). Significant differences among samples are indicated by *p  <  0.01, **p  <  0.005, and 
***p  <  0.001

Table 2  Correlation analysis of values from antioxidant assays 
and carotenoid contents

* p  <  0.05
** p  <  0.01
*** p  <  0.001

R2 Flavonoid DPPH ABTS Carotenoid

Polyphenol 0.335* 0.667*** 0.806*** 0.041

Flavonoid 0.444** 0.243* 0.079

DPPH 0.484** 0.138

ABTS 0.058
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a and b increased with increasing carotenoid accumula-
tion in orange corn during seed maturation [20]. In addi-
tion, the changes in kernel color values a and b showed 
significant consistency, as carotenoid are degraded dur-
ing postharvest storage [21]. In the current study, the 
significant partial correlation coefficients between ker-
nel redness and carotenoid contents indicate that a value 
rather than b value could be used as an indicator of carot-
enoid contents, especially for genetically diverse kernels.
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Table 3  Correlations between kernel color and the levels of 
antioxidant compounds

L lightness; a redness; b yellowness
* p  <  0.05

R2 Polyphenol Flavonoid DPPH ABTS Carotenoid

L 0.000 0.026 0.002 0.045 0.216

a 0.002 0.048 0.003 0.013 0.352*

b 0.238* 0.056 0.163 0.097 0.027
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