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Abstract 

Duckweeds are floating plants of the family Lemnaceae, comprising 5 genera and 36 species. They typically live in 
ponds or lakes and are found worldwide, except the polar regions. There are two duckweed subfamilies—namely 
Lemnoidea and Wolffioideae, with 15 and 21 species, respectively. Additionally, they have characteristic reproduc‑
tion methods. Several metabolites have also been reported in various duckweeds. Duckweeds have a wide range of 
adaptive capabilities and are particularly suitable for experiments requiring high productivity because of their speedy 
growth and reproduction rates. Duckweeds have been studied for their use as food/feed resources and pharmaceuti‑
cals, as well as for phytoremediation and industrial applications. Because there are numerous duckweed species, cul‑
ture conditions should be optimized for industrial applications. Here, we review and summarize studies on duckweed 
species and their utilization, metabolites, and cultivation methods to support the extended application of duckweeds 
in future.
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Introduction
Duckweeds are among the smallest free-floating aquatic 
plants worldwide. They have a simple morphology, com-
prising a few fronds; furthermore, they rarely flower [1, 
2]. Duckweeds replicate and proliferate rapidly. The 
reproduction period is only 1.2  days per generation [3]. 
Additionally, they are highly adaptable and occur in 
diverse aquatic environments [4]. Similar to other aquatic 
plants, duckweed species generally inhabit the natural 
environment, such as ponds and lakes, and grow best 
especially in tropical and temperate regions [5, 6]. They 
can also grow well in local and industrial wastewater 
[7, 8]. Because of these features, duckweeds are suitable 
for various experimental and practical applications that 
require fast and high productivity.

Duckweeds have been utilized for food, pharmaceuti-
cal, phytoremediation, and other industrial applications 
[9–12]. Climate crisis has become a serious problem 

that threatens the food and feed supply of the increasing 
population of the world. It is known that duckweeds con-
tain essential nutrients such as proteins, carbohydrates, 
and fats. Additionally, they contain a variety of second-
ary metabolites that are beneficial to humans. Therefore, 
consideration of cultivation methods of duckweeds is 
vital to their enhanced utilization in various industrial 
applications. There have been several reports regarding 
utilization, metabolites, and cultivation of duckweeds; 
these should be reviewed and summarized as a funda-
mental information for enhanced duckweed application. 
The objective of this review was to summarize the diverse 
utilization of duckweeds and their metabolites and cul-
tivation methods. This review will be useful for further 
industrial applications of duckweeds.

Duckweeds and their utilization
Duckweed species
Duckweeds belong to the family Lemnaceae, comprising 
5 genera and 36 species under two subfamilies Lemnoidea 
(15 species) and Wolffioideae (21 species) [13, 14]. Duck-
weed species self-replicate genetically identical clones 
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in a vegetative manner, wherein daughter fronds sprout 
from the mother fronds [4, 15]. However, the two sub-
families differ in how they multiply. Lemnoidea (genera 
Landoltia, Lemna, and Spirodela) has two meristematic 
regions in the mother frond. In contrast, Wolffioideae 
(genera Wolffia and Wolffiella) has a single meristematic 
pouch in the mother frond [16, 17]. Landoltia, formerly 
Spirodela punctata, is a duckweed with two attached 
fronds [18, 19]. Lemna has one root and two to four 
fronds, and its length has been reported as up to 6.0 mm 
[18, 20]. Spirodela, which has the smallest genome 
among the duckweed family, has five large fronds from 4 
to 12 mm in length [21, 22]. Wolffia is the most derived 
and smallest genus, which seldom exceeds 0.5 to 1.2 mm 
in length and 0.4 to 1.0 mm in width [17]. Wolffiella has 
a low flowering frequency and ranges from 1.0 to 5.0 mm 
in frond length [16, 23]. We found that duckweed species 
have different morphological characteristics.

The single species of Landoltia—Landoltia punctata—
was formerly Spirodela punctata [18]. The 12 species of 
Lemna include Lemna aequinoctialis, Lemna disperma, 
Lemna gibba, Lemna japonica, Lemna minor, Lemna 
minuta, Lemna obscura, Lemna perpusilla, Lemna ten-
era, Lemna trisulca, Lemna turionifera, and Lemna val-
diviana. There are two Spirodela species (Spirodela 
intermedia and Spirodela polyrrhiza) [1]. Wolffia 
includes 11 species: Wolffia angusta, Wolffia arrhiza, 
Wolffia australiana, Wolffia borealis, Wolffia brasiliensis, 
Wolffia columbiana, Wolffia cylindracea, Wolffia elon-
gata, Wolffia globosa, Wolffia microscopica, and Wolffia 
neglecta [24]. The 10 species of Wolffiella include Wolf-
fiella caudata, Wolffiella denticulata, Wolffiella gladiata, 
Wolffiella hyalina, Wolffiella lingulata, Wolffiella neo-
tropica, Wolffiella oblonga, Wolffiella repanda, Wolffiella 

rotunda, and Wolffiella welwitschii [1]. Hereafter, Lemna, 
Spirodela, and Wolffia genera are abbreviated as L., S., 
and W., respectively.

Food and feed resources
It is known that most duckweeds proliferate rapidly, and 
the harvested yield per area is higher than the average 
of the major crop yields [4]. The protein production of 
duckweeds per harvested area was higher than that of 
soybean, rice, and corn; thus, it could solve the problem 
of farmland shortage to produce food or animal feed [25–
28]. Duckweeds contain starch, fatty acid, protein, and 
other secondary metabolites used in food and feed indus-
tries [7, 9, 29–32]. Compared with red meat, plant-based 
foods have less of an association with cardiometabolic 
risks and diabetes [33, 34]. Additionally, duckweeds have 
been accepted as food resources without public aversion 
[35]. Because of their high yield, economic advantage, 
nutrient composition, and positive perception by people, 
duckweeds have been utilized as the plant-derived food 
and feed resources.

Table 1 lists duckweed species used as food resources. 
Wolffia species have long been consumed as protein 
sources by humans in Asia [9, 29, 36]. Currently, duck-
weeds are mainly consumed as amino acid supplements 
[29]. Parabel, Ltd. has a product line of duckweed plant 
powders as an alternative to high protein foods [37, 38]. 
Duckweeds are also expected to occur in the European 
food market [39]. Consumption of plant protein, instead 
of animal protein, is expected to reduce energy use and 
greenhouse gases [40]. Duckweeds are good candi-
dates for nutritious and safe meat protein substitutes for 
humans. Consumption of W. globosa as a meat substitute 
reduces the risk of iron deficiency while maintaining iron 

Table 1  List of duckweeds used as food and feed resources

L. Lemna, S. Spirodela, W. Wolffia

Usages Species References

Food

 Amino acid supplement W. globosa [29]

 Iron source W. globosa [41]

 Protein powder Lemna spp. [37]

 Tradition food W. arrhiza and W. globosa [9, 29, 36]

 Vitamin B12 supplement W. globosa [29]

Feed

 Cattle Lemna spp., Spirodela spp., and Wolffia spp. [48]

 Chicken Landoltia punctata and L. gibba [7, 15, 26, 51]

 Fish L. gibba, L. minor, L. perpusilla, and S. polyrrhiza [27, 46, 47, 52]

 Sheep Landoltia punctata [49]

 Recycled feed supplement L. minuta [45]

 Waterfowl L. minor [50]
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homeostasis and folic acid concentration [41]. Clini-
cal nutrition studies have demonstrated that the essen-
tial amino acids and vitamin B12 contents of duckweeds 
are comparable to peas and cheese [29]. Iron and zinc in 
duckweeds are sufficient for the recommended allow-
ance, similar to the sodium/potassium ratio and fiber 
content [42]. The amino acid composition of Wolffia sp. 
and Wolffiella sp. meets the World Health Organization 
(WHO) recommendations [9, 43]. The ratio of omega-3 
to omega-6 fatty acids in Landoltia punctata, L. gibba, 
L. minor, S. polyrrhiza, W. microscopica, and Wolffiella 
hyalina makes them suitable for food and feed [9]. How-
ever, it should be noted that consumption of duckweed 
species high in oxalic acid could cause kidney stones [44]. 
Moreover, intake of duckweed with substance adsorption 
abilities could lead to heavy metal intake.

Duckweed species have been used as livestock feed for 
hundreds of years and have been shown to be nutritious 
[15, 28, 31]. Duckweed feed can supply animals with 
phosphate and nitrogen [39]. L. minuta can be recycled 
as a feed supplement by adsorbing micronutrients such 
as selenium and zinc, which are essential for animals [45]. 
W. arrhiza, used as animal feed, yields protein content 
comparable to that by soybeans [17]. As listed in Table 1, 
duckweeds are used as feed for various livestock, includ-
ing cattle, chicken, fish, sheep, and waterfowl [7, 15, 26, 
27, 46–51]. L. minor and S. polyrrhiza are economi-
cally viable alternatives to fish and soybean meal feed 
for fish and waterfowl [27, 46, 50, 52]. In cows, there is 
no abnormality in the digestion of dry matter and crude 

protein of duckweed; thus, it could be used as an alter-
native feed for soybean meal [48]. Soybeans are most 
commonly used as feed, but the expansion of cultiva-
tion because of increased demand could emit significant 
greenhouse gases from land use change [53]. Duckweeds 
are considered as novel ingredients to replace soybeans, 
thus reducing the burden of greenhouse gas emissions 
and alleviating the negative aspects of feed production 
[51]. The protein content of duckweeds grown in organic 
manure is very high, and utilization of duckweed as feed 
has been suggested as a solution to environmental issues 
related to manure purification and feed production [54]. 
Duckweeds are protein sources that could replace soy-
bean meal and are expected to be used as substitutes to 
reduce environmental pollution created by expanding 
soybean cultivation.

Pharmaceutical resources
As represented in Table  2, duckweeds have been sug-
gested as pharmaceutical resources. Previous studies 
have been reported that duckweed species such as L. 
minor, L. trisulca, and S. polyrrhiza have been widely uti-
lized as folk medicine in China, Korea and a few Euro-
pean nations [12, 44, 55]. Duckweeds are medicinal herbs 
that do not have severe side effect [44]. Recent research 
has revealed the various pharmacological effects of 
duckweeds. L. minor has antibacterial activity against 
gram-negative bacilli (Pseudomonas fluorescens, Shi-
gella flexneri, Escherichia coli, and Salmonella typhi) 
and gram-positive bacteria (Bacillus subtilis), and could 

Table 2  List of duckweeds used as pharmaceutical resources

L. Lemna, S. Spirodela, W. Wolffia, LEX System Lemna Expression System

Pharmaceutical activities Species References

Antibacterial activity L. minor and S. polyrrhiza [44, 56–58]

Anticancer activity Landoltia punctata [59]

Anti-adipogenic effect S. polyrrhiza [61]

Antifungal activity L. aequinoctialis and S. polyrrhiza [58, 69]

Antigen expression for vaccines after nuclear transformation L. minor [66]

Antioxidant activity Landoltia punctata, L. gibba, L. minor, S. polyrrhiza, W. 
borealis, and Wolffiella caudata

[44, 59]

Colonic health improvement Landoltia punctata [62]

Cytotoxic activity L. minor [44]

Folk medicine (antiscorbutic, asthma, colds, diabetes, diuretic, febrifuge, general 
tonic, hives, measles, edema, rhinitis, soporific, and vitiligo)

L. minor [12, 44]

Folk medicine (choleretic and phytoncidic activities) L. trisulca [12]

Folk medicine (erysipelas and leprosy) S. polyrrhiza [12]

Immunomodulatory activity L. minor [57, 60]

Monoclonal antibody production as a transgenic plant by LEX System L. minor [63, 64]

Monoclonal antibody production for non-Hodgkin’s lymphoma L. minor [67, 68]

Recombinant human granulocyte colony-stimulating factor production W. arrhiza [65]
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be an alternative to antibacterial agents for the treat-
ment of various diseases [44, 56, 57]. S. polyrrhiza also 
showed antimicrobial activities against seven gram-neg-
ative bacilli, one gram-positive bacterium, and two fungal 
pathogens [58]. Flavonoids in duckweeds could contrib-
ute metabolites for the antioxidant activity [59]. Apigenin 
and vitexin in Landoltia punctata have been suggested as 
constituents for treating non-small lung cancer [59]. L. 
minor has been shown to have immunomodulatory activ-
ity [57]. In particular, flavonoids in L. minor have been 
reported to have immunosuppressive effects by reduc-
ing free hemoglobin content and antibody production 
in human whole blood samples infected with ovalbumin 
antigen [60]. Flavonoids in S. polyrrhiza have been dem-
onstrated to exert anti-adipogenic effect by reducing tri-
glyceride content [61]. An increase in fecal butyric acid 
has been reported as a result of duckweed consumption, 
which may be associated with improved colon health 
in humans and is an important energy source for colon 
cells [62]. Although further research and clinical trials are 
required for practical use, duckweeds have great poten-
tial to be utilized for pharmaceutical purposes because of 
their diverse pharmacological effects.

Another pharmacological potential of duckweeds 
is their use as a platform for human therapeutic pro-
teins production. Recombinant therapeutic proteins are 
produced by Lemna Expression System (LEX System) 
[63, 64]. Additionally, nuclear-transformed W. arrhiza 
expresses human granulocyte colony-stimulating factor 
[65]. Nuclear-transformed L. minor-based expression 
studies for avian influenza vaccine development have 
shown the potential of transgenic duckweed to provide 
good-quality antigens for vaccine development [66]. Syn-
thon/Biolex Therapeutics produces large quantities of 
antibodies for non-Hodgkin’s lymphoma using duckweed 
species [67, 68]. Duckweed-based antibody production 
could be considerably inexpensive and could provide easy 
to scale up platforms for diverse antibody-based thera-
pies to treat and prevent diseases.

Phytoremediation resources
Duckweeds, tolerant to extreme conditions, are known as 
effective remediation resources for pollutants in waste-
water. They purify sewage through the powerful accumu-
lation of chemicals by adsorption or uptake [25, 70, 71].

As listed in Table 3, duckweeds have been reported to 
purify inorganic, organic, and pharmaceutical materials. 
Ammonium elimination is necessary for the purification 
of wastewater because ammonium increases eutrophi-
cation in ponds and forms nitrates in groundwater [72]. 
Landoltia punctata absorbs ammonium from water and 
stores ammonium ions as a useful nitrogen source [19, 
73]. Excessive concentration of boron, a by-product of 

industrial production, is detrimental to the ecosystem. 
L. gibba has also been reported to remove boron from 
water [11, 74]. Boron is adsorbed to apiogalacturonans in 
the cell wall of duckweeds [75]. L. minor captures iron, L. 
gibba captures sulfate, and S. polyrrhiza captures fluoride 
[76–78].

Nitrogen and phosphorous emissions from manure in 
livestock systems contribute to eutrophication of ecosys-
tems; thus, their recovery and reuse are significant and 
essential tasks [79]. For example, Landoltia punctata, 
L. gibba, L. minuta, L. turionifera, S. polyrrhiza, and W. 
borealis purify wastewater or swine lagoons by removing 
nitrogen and phosphorous [19, 70, 71, 76, 79–81]. The 
adsorption capacity of nitrogen and phosphorus is espe-
cially valuable because duckweeds can be reused as fer-
tilizers that release nitrogen and phosphorus in the soil 
[82].

Duckweeds are resistant to several heavy metals and 
can be used for bioremediation in local and industrial 
wastewater by accumulating heavy metals, including 
arsenic, cadmium, chromium, cobalt, copper, lead, nickel, 
selenium, and zinc [45, 83–94]. They have an enzymatic 
antioxidant mechanism to control oxidative stress caused 
by heavy metals and reduce damage [83]. Duckweeds 
relieve the stress of heavy metals that affect nutrient 
absorption by activating antioxidative mechanisms [85]. 
The chelating action of duckweeds can also alleviate the 
stress caused by heavy metals, such as chromium (IV) 
[85, 93].

The release of diverse pharmaceuticals into environ-
ment severely affects various plants and animals, and 
their removal through phytoremediation is important. 
L. turionifera and W. borealis could remove pharmaceu-
ticals, such as acetaminophen, fluoxetine, progesterone, 
and sulfamethoxazole [71]. L. minor can remove benzo-
triazoles used in anti-corrosion products, coolants, and 
dishwashing liquids [95]. L. turionifera can eliminate pes-
ticides, such as imidacloprid insecticide, from contami-
nated water [96]. L. gibba was used for the remediation of 
fresh water contaminated with nonsteroidal anti-inflam-
matory drug ibuprofen [97]. Applications of L. gibba for 
removing tetracycline and L. minor for removal antimi-
crobials have also been reported [98, 99].

Industrial wastewater from modern factories and 
sewage from large animal farms, hospitals, and homes 
are known to cause problems in aquatic environments. 
Duckweeds could be the best aquatic purification plant. 
Phytoremediation using duckweeds is a cost-effective 
and environmentally friendly strategy to prevent envi-
ronmental pollution and preserve aquatic and terrestrial 
ecosystems. However, the purification capacity of duck-
weeds and disposal of contaminated duckweeds should 
be thoroughly considered.
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Biofuels, space exploration, and bioplastics
In recent years, interest in the developing alternative 
energy sources has increased owing to environmental 
problems and climate changes. Biofuels are renewable 
energy alternatives to fossil fuels and include bioalco-
hols, biodiesel, and biogas. Duckweeds have been used 
for bioethanol production as a renewable energy resource 
[25]. With the increasing need for biomass, research has 
focused on duckweeds and their starch content. Under 
proper conditions, the doubling time of duckweed bio-
mass ranges from 1.34 to 4.54 days [4]. Starch could be 
used for bioethanol production through a considerably 
simple conversion process [25]. Duckweed biomass pro-
duction is economical because, unlike corn, duckweeds 

do not require mechanical grinding; additionally, the by-
product of ethanol fermentation has a high protein con-
tent that could be reused as livestock feed [25].

As listed in Table  4, duckweeds have been used as a 
resource for biomass and biofuel production. Duckweeds 
with a high starch content, high biomass production, and 
low lignin content could be promising sources of bioetha-
nol production [103]. Duckweeds can be enzymatically 
converted to bioethanol by fermentation without ther-
mophysical pretreatment [104]. L. aequinoctialis and S. 
polyrrhiza have been selected to increase bioethanol yield 
as they have a high starch content and biomass produc-
tion capacity [105, 106]. S. polyrrhiza could be utilized as a 
substitute for corn starch to make the bioethanol industry 

Table 3  List of duckweeds used as phytoremediation resources

L. Lemna, S. Spirodela, W. Wolffia

Phytoremediation targets Species References

Inorganic

 Ammonium Landoltia punctata [19]

 Arsenic L. gibba, L. valdiviana, S. intermedia, and W. arrhiza [83, 87–89]

 Boron L. gibba [11, 74]

 Cadmium L. minor and L. trisulca [90–92]

 Chromium S. polyrrhiza [93]

 Cobalt Landoltia punctata [94]

 Copper L. aequinoctialis, L. gibba, L. minor, and L. trisulca [84, 85, 91, 92]

 Fluoride S. polyrrhiza [78]

 Iron L. minor [77]

 Lead L. perpusilla [86]

 Nickel Landoltia punctata and L. minor [90, 94]

 Nitrogen Landoltia punctata, L. gibba, L. minuta, and S. polyrrhiza [19, 70, 76, 79–81]

 Phosphorous Landoltia punctata, L. gibba, L. minuta, L. turionifera, S. polyrrhiza, 
and W. borealis

[70, 71, 76, 79–81]

 Selenium L. minuta [45]

 Sulfate L. gibba [76]

 Zinc L. minor and L. minuta [45, 90]

Organic

 Dairy industry processing wastewater L. minor [100]

 Hydrocarbons in crude oil-contaminated wetlands L. aequinoctialis [101]

 Synthetic dyes L. minor [102]

 Wastewater Landoltia punctate and W. arrhiza [7, 17]

Pharmaceutical

 Acetaminophen L. turionifera and W. borealis [71]

 Antimicrobials L. minor [99]

 Benzotriazoles L. minor [95]

 Fluoxetine L. turionifera and W. borealis [71]

 Ibuprofen L. gibba [97]

 Imidacloprid L. turionifera [96]

 Progesterone L. turionifera and W. borealis [71]

 Sulfamethoxazole L. turionifera and W. borealis [71]

 Tetracycline antibiotics L. gibba [98]
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sustainable because its ethanol yield (6.42 × 103 l ha−1) has 
been found to be higher than that of corn (4.31 × 103 l ha−1) 
[106]. Cytokinin treatment has been suggested as a good 
option to increase the growth rate of and starch accumula-
tion in S. polyrrhiza [107].

Landoltia punctata could be used for biobutanol pro-
duction by a mutant strain of yeast [103]. L. minor can be 
pyrolyzed to produce biochar, and biochars are catalysts 
for biogas [108]. After extracting starch from duckweeds, 
the residual cell wall can be broken down into sugars and 
uronic acids, which can be converted into biofuel sources 
[109]. Additionally, L. minuta has been reported as an eco-
friendly energy resource that converts solar energy into 
electricity by acting as a plant fuel cell to generate electric-
ity [110].

L. aequinoctialis and W. globosa have a high relative 
growth rate even under microgravity, making them suit-
able for use in space exploration [111]. L. gibba is also suit-
able for agriculture and bioregeneration systems for space 
exploration because it has shown a high growth rate under 
an extreme range of lighting from low growth luminosity 
to a total daily photon mass similar to that received on the 
brightest and longest days [112]. In long-term space explo-
ration, W. arrhiza could also be a photosynthetic producer 
[113].

Duckweeds can be utilized as resources for biodegrad-
able plastics. Biodegradable plastics are polymers that can 
be degraded by living organisms and are invented as alter-
natives to non-degradable plastics [114]. Lemna species 
produce biodegradable plastics for various industrial prod-
ucts [115]. Blending duckweed biomass and polyethylene 
has shown good stability and matrix characteristics [115].

Useful metabolites in duckweeds
Proteins, carbohydrates, and fats in duckweeds
Table 5 lists the total content of proteins, carbohydrates, 
and fats in various duckweeds. The proportion of the 
total content of amino acids in duckweeds was the high-
est compared with that of carbohydrates and fatty acids. 

The total protein content of duckweeds ranges from 
19.8% to 48.2% per dry weight. Relatively higher level of 
total amino acid (48.2%) per dry weight was observed in 
W. globosa [116]. Relatively higher level of total carbo-
hydrate content (38%) was reported in L. gibba [117]. In 
addition, total fatty acid content was relatively higher in 
L. minor (11.4%) [30].

The nine essential amino acids found in the duckweed 
species are histidine, isoleucine, leucine, lysine, methio-
nine, phenylalanine, threonine, tryptophan, and valine 
and eleven non-essential amino acids, namely alanine, 
arginine, asparagine, aspartate, cysteine, glutamate, 
glutamine, glycine, proline, serine, and tyrosine, were 
also found in duckweeds (Table  6) [9, 15, 54, 116, 122]. 
Amino acid derivatives, such as citrulline, cystathionine, 
hydroxyproline, γ-aminobutyric acid (GABA), and tau-
rine, were also found (Table  6) [54, 122]. Notably, the 
amino acid compositions of W. microscopica and Wolf-
fiella hyalina are close to the content of lysine (30  mg/
kg), sulfur amino acids (15  mg/kg) including cysteine 
and methionine, threonine (15  mg/kg), and tryptophan 
(4 mg/kg) required for adults per day according to WHO 
recommendations. Additionally, the contents of cysteine 
and methionine are 22% higher than the recommended 
allowance [43].

Carbohydrates in duckweeds comprised sugars, poly-
saccharides, and starch. Sugars, such as apiose, arab-
inose, fructose, fucose, galactose, glucose, mannose, 
raffinose, rhamnose, sucrose, and xylose, were found 
in duckweeds (Table  6) [10, 75]. The compositions of 
duckweed cell walls were similar among species, con-
sisting of pectin and hemicellulose [109]. Among the 
polysaccharides that do not make up the cell wall, inu-
lin has been reported [120]. Starch accounts for approx-
imately 4.0% to 29.8% of duckweed species, as listed in 
Table  5. High levels of starch accumulation have been 
observed under nutritional deficiency conditions in S. 
polyrrhiza [106]. Adequate salinity condition (150 mM 
NaCl) induce starch accumulation in Landoltia 

Table 4  List of duckweeds used in biofuels and bioplastics applications

L. Lemna, S. Spirodela, W. Wolffia

Usages Species References

Biobutanol Landoltia punctata [103]

Biodegradable plastics for various industrial products Lemna sp. [115]

Bioethanol L. aequinoctialis, L. minor, and S. polyrrhiza [104–106]

Biofuels L. gibba, S. polyrrhiza, and W. australiana [109]

Biogas L. minor [108]

Biomass production as a bioregenerative system for space exploration L. aequinoctialis, L. gibba, and W. globosa [111, 112]

Photosynthetic producer in space exploration W. arrhiza [113]

Plant fuel cell L. minuta [110]
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punctata, L. aequinoctialis, L. gibba, L. minor, and S. 
intermedia [125]. However, duckweeds produce low 
total protein levels under saline condition (10, 20, 
and 30  mmol/L NaCl concentration) [106]. Therefore, 
when choosing salt treatment as an induction method 
to increase biomass for biofuel production, circum-
spection regarding its correlation with protein levels is 
required. L. aequinoctialis and S. polyrrhiza are known 
as high-starch duckweed species; therefore, they can be 
utilized in the biofuel industry [105, 106].

As listed in Table 5, the total fatty acids content ranges 
from 1.05% to 1.62% and the triacylglycerol composi-
tion is 0.02% in Landoltia punctata, L. aequinoctialis, S. 
polyrrhiza, and W. globosa [119]. The fatty acids found 
in duckweeds included behenic acid, eicosanoic acid, 
6-hexadecenoic acid, 2-hydroxypalmitic acid, lauric acid, 
lignoceric acid, α-linolenic acid, γ-linolenic acid, linoleic 
acid, linolenic acid, myristic acid, nonadecylic acid, oleic 
acid, palmitelaidic acid, palmitic acid, pentadecylic acid, 
stearic acid, and stearidonic acid (Table  6) [9, 17, 32, 

Table 5  Total contents of proteins, carbohydrates, and fats in duckweeds

L. Lemna, S. Spirodela, W. Wolffia, NS not specified

The value before (starch) represents the starch content

Duckweed species Proteins Carbohydrates Fats References

Landoltia

 Landoltia punctata 20–28.7% 10–11.20% (Starch) 4–5.5% [9, 118, 119]

Lemna

 L. aequinoctialis 34.18% 11.61–28.68% (Starch) NS [69, 105, 119]

 L. gibba 21.5–37.9% 17.6–38.0% 4.4–9.3% [117, 118, 120]

 L. minor 20–38.30% 4% (Starch) 11.4% [9, 30, 42]

Spirodela

 S. polyrrhiza 25.6–34.5% 11.14–29.8% (Starch) 4.5% [46, 105, 106, 118, 119, 121]

Wolffia

 W. arrhiza 19.8–20.15% 43.6% 2.43–5.0% [36, 116]

 W. columbiana 36.5–44.7% NS 6.6% [116, 118]

 W. globosa 33.3–48.2% 11.05% (Starch) 5.0–9.6% [116, 119]

Wolffiella

 Wolffiella hyalina 35% NS 7% [9]

Table 6  List of amino acids, saccharides, and fatty acids in duckweeds

Compounds References

Proteins

 Amino acids Alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, 
isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, 
tyrosine, and valine

[9, 15, 54, 116, 122]

 Amino acid derivatives Citrulline, cystathionine, hydroxyproline, γ-aminobutyric acid (GABA), and taurine [54, 122]

Carbohydrates

 Sugars Apiose, arabinose, fructose, fucose, galactose, glucose, mannose, raffinose, rhamnose, 
sucrose, and xylose

[10, 75]

 Polysaccharides Inulin, pectin, and hemicellulose [109, 120]

 Starch Starch [9, 75, 119]

Fats

 Long-chain fatty acids Behenic acid, eicosanoic acid, 6-hexadecenoic acid, 2-hydroxypalmitic acid, lignoceric acid, 
α-linolenic acid, γ-linolenic acid, linoleic acid, linolenic acid, myristic acid, nonadecylic acid, 
oleic acid, palmitelaidic acid, palmitic acid, pentadecylic acid, stearic acid, and stearidonic 
acid

[9, 17, 32, 119, 120, 123, 124]

 Medium-chain fatty acids Lauric acid [120, 123]

 Short-chain fatty acids C2, C3, C4, and C5 [28]
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119, 120, 123]. Three fatty acids—linoleic acid, linolenic 
acid, and palmitic acid—are dominant, accounting for 
approximately 80% of the total fatty acids [119]. The con-
tent of α-linolenic acid is also particularly high (between 
11 and 25%) [9]. The ratio of omega-3 to omega-6 fatty 
acids in duckweeds has been reported to range from 5:3 
to 4:1 [9]. Increased consumption of omega-3 fatty acids 
could prevent inflammatory diseases, cancer, cardio-
vascular diseases, and other chronic diseases, therefore, 
the omega-3:omega-6 ratio in duckweeds is noteworthy 
[126].

Short chain fatty acids (SCFAs) have also been identi-
fied in L. minor, the total SCFA is 16.6 mM, of which C2 
and C3 account for 11.8 and 3.1  mM, respectively [28]. 
SCFAs can be absorbed into colon epithelial cells through 
diffusion or active transport; C2 and C3, in particular, are 
easily transported to other cells and organs [127]. SCFAs 
have been reported to contribute to the healthy intestinal 
environment, regulate the immune system, and prevent 
colorectal cancer [127, 128]. Despite their substantial 
potential as bioactive materials, profiling individual intact 
lipid species in duckweeds has rarely been performed. 
Further investigation should be conducted to reveal the 
profiles of such lipid species in various duckweed species 
to broaden application of duckweeds.

Secondary metabolites in duckweeds
As listed in Table  7, duckweeds contain various useful 
secondary metabolites including phenolic compounds 
(flavonoids, phenylpropanoids,  and tannins) and terpe-
noids. Various physiological properties have facilitated 
their utility, and they have been highlighted in the phar-
maceutical, cosmetics, and food industries.

Phenolic compounds are bioactive compounds with 
diverse pharmacological activities in humans [129]. The 
total phenolic content ranges from 1.3% to 2.9% in L. 
minor [30]. As listed in Table 7, the phenolic compounds 
detected in duckweeds are flavonoids, hydroxycinnamic 
acids, and tannin. The flavonoids in duckweeds are api-
genin, luteolin, and their derivatives (Table  7). Duck-
weeds are known to have a higher flavonoid content 
(> 2%) than most other plants (0.5% to 1.5%) [94]. In par-
ticular, S. polyrrhiza and W. globosa has a high flavonoid 
content (4.22% and 5.85%, respectively), which could be 
advantageous in producing flavonoids [130]. Landoltia 
punctata showed significant apigenin content, and the 
contents of luteolin and its derivatives were high in L. 
gibba, S. polyrrhiza, W. borealis, and Wolffiella caudata 
[59]. Landoltia punctata, S. polyrrhiza, W. borealis, and 
Wolffiella caudata contain abundant C-glycosylated fla-
vonoids, which exhibit high antioxidant activity [59, 131]. 
Apigenin and vitexin of Landoltia punctata could be 
used as anticancer adjuvants, and flavone C- glycosides 

from L. japonica exhibits cytotoxic activity against vari-
ous human cancer cell lines, such as HepG-2, SW-620, 
and A-549 [59, 132]. Anthocyanins have been detected in 
L. gibba and S. intermedia and exhibit antioxidant prop-
erties [83, 87]. Hydroxycinnamic acids detected in duck-
weeds include caffeic acid, cinnamic acid, m-coumaric 
acid, p-coumaric acid, ferulic acid, isofelulic acid, and 
sinapic acid [17, 123, 133, 134]. Hydroxycinnamic acids 
possess antibacterial, anticollagenase, anti-inflammatory, 
anti-obesity, antioxidant, anti-tyrosinase, neuroprotec-
tion, and ultraviolet protection activities that could con-
tribute to human health [135, 136].

Terpenoids (isoprenoids) have been widely utilized in 
the pharmaceutical, food, cosmetic, pesticide, chemical 
industries [137]. Terpenoids such as carotenoids, phytos-
terols, and saponins, have been detected in duckweeds 
(Table  7). Neophytadiene, 24-methylenecycloartan-
3-one, saponin, and squalene have also been reported 
[17, 28, 42, 58, 134]. Saponins, including 24-dehydroechi-
noside, echinoside A, stichoposide C, and stichoposide 
D, show antitumor, hypolipidemic activity, and antihy-
pertensive effects and suppress fat accumulation [138]. 
L. minor contains a total saponin content 3.2 g/kg dried 
weight [28]. Phytosterols, such as Δ5-avenasterol, camp-
esterol, cycloartenol, β,δ-sitosterol, and stigmasterol, 
have been reported in duckweeds [9, 17, 124, 133, 134]. 
Phytosterols account for approximately 20% of the wax 
fraction of S. polyrrhiza [134]. Phytosterols are choles-
terol-lowering agents that reduce serum and liver cho-
lesterol [139]. Carotenoids belonging to the tetraterpene 
found in duckweeds included α-carotene, β-carotene, 
loliolide, lutein, lycopene, violaxanthin, xanthophyll, and 
zeaxanthin [9, 30, 112, 120, 124].

Cultivation
Duckweed species are distributed in various regions in 
the natural environment, except for deserts and polar 
regions [6]. The growth of duckweed species is exponen-
tial and faster than most other plants under appropriate 
carbon dioxide, light, pH, temperature, and nutrient sup-
ply conditions [15, 73]. Table 8 lists the culture conditions 
of various duckweeds. Erlenmeyer flasks, Magenta vessel, 
and Petri dishes have been used for most small-volume 
cultures (< 500  mL) [4, 75, 96, 100, 104, 107, 140–142, 
161]. Small-scale cultures should be subcultured peri-
odically, and the light–dark cycle and temperature con-
ditions should be constant to achieve a uniform growth 
rate and constant nutrient contents.

It is important which culture medium to choose 
because incorrect selection can lead to physiological dis-
turbances or death of the plants [143]. Schenk and Hilde-
brandt medium, Hutner medium, Murashige and Skoog 
medium, and Hoagland medium are generally used as 
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Table 7  Secondary metabolites in duckweeds

Contents Species References

Phenolic compounds Flavonoids Anthocyanin L. gibba and S. intermedia [83, 87]

Apigenin Landoltia punctata and S. polyrrhiza [59, 131]

Apigenin 6-C-(2″-O-trans-caffeoyl-D-
malate)-β-glucoside

L. japonica [132]

Apigenin 7‐O‐glucoside S. polyrrhiza [59, 131]

Apigenin 8‐C‐glucoside (vitexin) Landoltia punctata, L. gibba, and S. 
polyrrhiza

[59, 131]

5-O-(E)-caffeoylquinic acid Landoltia punctata and S. polyrrhiza [59]

3-O-(E)-coumaroylquinic acid S. polyrrhiza [59]

6,8-Di-C-β-glucosylapigenin L. japonica [132]

6,8-Di-C-β-glucosylluteolin L. japonica [132]

Isoorientin L. japonica [132]

Isovitexin L. japonica [132]

Luteolin S. polyrrhiza [131]

Luteolin-6-C-glucoside-8-C-rhamno‑
side

Landoltia punctata and W. borealis [59]

Luteolin 6-C-(2″-O-trans-caffeoyl-D-
malate)-β-glucoside

L. japonica [132]

Luteolin 6-C-(2″-O-trans-coumaroyl-D-
malate)-β-glucoside

L. japonica [132]

Luteolin 7‐O‐glucoside S. polyrrhiza [59, 131]

Luteolin-7-O-β-glucoside L. japonica [132]

Luteolin-7-O-glucoside-C-glucoside Landoltia punctata, W. borealis, and 
Wolffiella caudata

[59]

Luteolin 8‐C‐glucoside (orientin) S. polyrrhiza and W. borealis [59, 131]

Luteolin-8-C-glucoside-6-C-rhamno‑
side

Landoltia punctata, L. gibba, W. borealis, 
and Wolffiella caudata

[59]

Luteolin-8-C-glucoside-6-C-xyloside Landoltia punctata, L. gibba, and W. 
borealis

[59]

Hydroxycinnamic acids Caffeic acid L. aequinoctialis and W. arrhiza [17, 133]

Cinnamic acid S. polyrrhiza [134]

m-Coumaric acid L. aequinoctialis [133]

p-Coumaric acid L. aequinoctialis, L. minor, and W. arrhiza [17, 123, 133]

Ferulic acid L. minor and W. arrhiza [17, 123]

Isoferulic acid L. aequinoctialis [133]

Sinapic acid L. aequinoctialis [133]

Tannin Tannin L. aequinoctialis, L. minor, and S. polyr-
rhiza

[28, 58, 69]

Terpenoids Diterpenoid Neophytadiene W. arrhiza [17]

Triterpenoids Δ5-Avenasterol W. microscopica [9]

Campesterol L. aequinoctialis, L. minor, S. polyrrhiza, 
W. arrhiza, and W. microscopica

[9, 17, 124, 133, 134]

Cycloartenol W. microscopica [9]

24-Methylenecycloartan-3-one W. arrhiza [17]

Saponin L. minor and S. polyrrhiza [28, 42, 58]

β-Sitosterol L. aequinoctialis, S. polyrrhiza, W. arrhiza, 
and W. microscopica

[9, 17, 133, 134]

δ-Sitosterol L. minor [124]

Stigmasterol L. aequinoctialis, L. minor, S. polyrrhiza, 
W. arrhiza, and W. microscopica

[9, 124, 133, 134]

Squalene S. polyrrhiza [134]

Tetraterpenoids α-Carotene L. gibba [120]
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refined media for the culture of various duckweeds. 
Schenk and Hildebrandt medium contains sucrose 
as the carbon source and KNO3 as a nitrogen source 
[144]. Regarding nitrogen sources, Hutner medium con-
tains NH4NO3, Murashige and Skoog medium contains 
NH4NO3 and KNO3, and Hoagland medium contains 
Ca(NO3)2 and KNO3 [145–147]. The differences in nitro-
gen sources could affect the starch and biomass produc-
tion of duckweeds [105, 148].

In mass production (> 500  mL), duckweeds are culti-
vated in artificial environments (bioreactors) or natural 
ponds, well water, dairy, and local wastewater [11, 37, 
54, 73, 83, 105, 106, 112, 149, 150, 162]. Under optimal 
environment conditions, including wind protection, 
water nutrient concentration, and optimum duckweed 
density, duckweeds can produce biomass with a produc-
tivity of 10–30 tons/ha per year [6, 151]. In open pond 
systems, S. polyrrhiza in organic manure and inorganic 
fertilizer is high in protein and carbohydrate contents, 
respectively [54]. Duckweeds grow rapidly even in animal 
wastewater, producing high biomass [106]. In the natural 
underground water, duckweeds have a tendency to grow 
slowly, lengthen roots, and possess lower protein content 
because of insufficient nitrogen and mineral nutrients 
[6, 106]. Conditions of essential phytonutrients, such as 
ammonium, calcium, magnesium, nitrogen, and phos-
phorous, affect the biomass of duckweeds [73].

Duckweeds grow in a wide pH range of 3.5 to 9.0, and 
the optimal pH range is between 6.5 and 7.5 [6, 73, 152, 
153]. The pH determines the ratio of NH3 to NH4

+ in the 
culture medium. As the pH increases, NH4

+ increases, 
thus preventing the transport of anions in the duckweed 
membrane and eventually reducing growth, high NH3 
at low pH exhibits toxicity [73, 153]. The pH also has a 
significant effect on the conversion of duckweed biomass 
into biobutanol. Bacterial growth yields sufficient butanol 
for industrial use when culture maintained between pH 
4.5 and 5.0 [103].

Light intensity and duckweed growth rate show a 
direct relationship, unless the light intensity is too 

high. The lowest growth rate was at a low intensity of 
6  μmol  m-2  s−1, and the growth rate increased with 
increasing light intensity to 1000  μmol  m-2  s−1 [141]. 
Duckweeds accumulate antioxidants to prevent dam-
age when exposed to excessive light. However, it has 
been proposed that the choice of optimal light intensity 
balances light efficiency with the antioxidant contents 
[112]. It was also reported that different light qualities 
affected the growth and physiological characteristics of 
duckweeds. Irradiation with ultra-high-frequency elec-
tromagnetic radiation has increased the growth rate and 
biomass, whereas infrared irradiation increased the num-
ber of fronds in L. minor culture [154]. However, ultra-
violet rays delay the development of duckweeds and the 
growth of the root system, and radiofrequency radiation 
induced oxidative stress in the plants [154, 155].

In a natural environment, duckweeds generally grow 
in the range of 6 to 33 ℃; the optimum water tempera-
ture for duckweeds growth is between 19 and 30 ℃ [6, 73, 
152]. In late summer in the temperate climate region of 
the world, duckweeds undergo a morphological change 
called turion because of the reduction in temperatures 
[6]. They sink into water bodies, storing starch as energy 
for the next growing season, and remain dormant. When 
the temperature increases in spring, they germinate 
because of light [156, 157]. Turion-type duckweeds could 
be suggested as useful biofuel feedstock because of their 
high anthocyanin and starch contents and low lignin con-
tent [156, 157]. Under controlled laboratory conditions, 
induction of conversion to turion by abscisic acid treat-
ment has been possible for S. polyrrhiza [156].

According to diverse goals and targets, optimal cultiva-
tion of duckweeds will be necessary from an economic 
and industrial point of view. Various culture methods of 
duckweeds using diverse types of bioreactors and con-
ditions should be employed for the utilization as food, 
pharmaceutical, phytoremediation, and biofuel resources. 
Aquaponics that combine aquaculture and hydroponics 
could be a sustainable production system for plants [158]. 
Additionally, the cultivation of various plants employing 

Table 7  (continued)

Contents Species References

β-Carotene L. gibba, L. minor, and W. microscopica [9, 30, 112, 120]

Loliolide L. minor [124]

Lutein L. gibba and W. microscopica [9, 112, 120]

Lycopene L. gibba [120]

Violaxanthin L. gibba and W. microscopica [9, 112, 120]

Xanthophyll L. gibba [120]

Zeaxanthin L. gibba and W. microscopica [9, 112]

L. Lemna, S. Spirodela, W. Wolffia
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the Internet of Things (IoT) and artificial intelligence 
(AI) technology enables the mass-production of good-
quality plants by controlling environmental conditions, 
such as irrigation irradiation, atmospheric pressure, wind 
speed, temperature, and humidity [159, 160]. Aquaponics 

coupled with IoT and AI technology could be employed 
for duckweed cultivation in the future.

Table 8  Culture conditions of duckweeds

SH medium used was Schenk and Hildebrandt [144]. MS medium was Murashige and Skoog [146]

1/2 indicates half-strength of culture medium. Parentheses in the culture scale indicate the volume or size of the vessels

L. Lemna, S. Spirodela, W. Wolffia

Culture volume Culture scale Culture medium Species pH/light/temperature/culture 
period

Refs.

 ≤ 50 mL

 10 mL Magenta vessel 1/2 SH L. turionifera pH 6.0/23 °C in light/21 °C in the dark [96]

 10 mL Petri dish (60 × 10 mm) 1/2 SH L. turionifera 23.8–29.7 °C in light/21.5 °C in 
dark/4 days

[140]

 50 mL Petri dish 1/2 Hutner L. minor and L. minuta 6, 10, 20, 30, 40, 90,150, 250, 400, or 
1000 μmol m−2 s−1/20 °C

[141

50–100 mL

 100 mL Petri dish (100 × 15 mm) Hoagland Lemna sp., Spirodela sp., 
Wolffia sp., Wolfiella sp.

pH 5.8/40 μmol m−2 s−1/23 °C / 
2 weeks

[161]

 100 mL 1/2 SH Landoltia spp., Lemna spp., 
Spirodela spp., Wolffia spp., 
and Wolffiella spp.

pH 6.5/20 or 
500 μmol m−2 s−1/25 °C/1 week

[75]

 100 mL Erlenmeyer flask (250 ml) Hoagland L. minor pH 5.8/120 μmol m−2 s−1/22 °C [104]

 100 mL Erlenmeyer flask (500 ml) SH L. gibba and S. polyrrhiza 80 μmol m−2 s−1/24 °C [107]

 100 mL Magenta vessel
(77 × 77 × 97 mm)

Synthetic dairy wastewa‑
ter or
1/2 Hutner

L. minor pH 4.5–5 / 80.82 μmol m−2 s−1 / 21 °C 
/ 1 week

[100]

100–500 mL

 180 mL Erlenmeyer flask (300 mL) Modified SH Landoltia spp., Lemna spp., 
Spirodela spp., Wolffia spp., 
and Wolffiella spp.

pH 5.5/100 μmol m−2 s−1/25 ± 1 °C/
1 week

[4]

 250 mL Flask (500 mL) Hoagland L. minor pH 7.0/75 μmol m−2 s−1/28 °C/10 days [142]

500–1000 mL

 600 mL Glass beaker (2 L) 1/2 MS S. polyrrhiza pH 5.8/5000 l×/25 ± 1 °C [149]

Plastic box (750 mL)
(12.5 × 12.5 × 4.2 cm)

SH or tap water L. aequinoctialis and S. 
polyrrhiza

pH 5.8/110 μmol m−2 s−1/25 °C/1 
week

[105]

 1000 mL Crystallizing dish
(1200 mL) (150 × 75 mm)

SH L. gibba pH 5.5/100, 200, 500, or 
700 μmol m−2 s−1/25 °C / 4 days

[112]

1 L < 

 2.3 L Glass vessel (2.5 L) Influent wastewater or 
1/50 Hutner

L. minor and W. arrhiza pH 7.1 / 50 μmol m−2 s−1 / 25 ± 0.5 °C 
/ 1 week

[150]

 2.5 L Plastic vessel (3 L) 1/2 Hoagland L. gibba pH 6.0–7.0/outdoor light (Sde Boker, 
Israel)/25 ± 6 °C

[11]

 10 L Polyethylene container
(45 × 30 × 20 cm)

Modified Hoagland S. intermedia pH 6.5/250 μmol m−2 s−1/25 ± 2 °C [83]

 320 × 101 L Polyethylene mesocosm
(2 × 4 × 0.4 m)

Natural drainage water or 
underground water

L. gibba pH 5–9/outdoor light/25–35 °C [73]

 126 L and 100 × 103 L Cemented outdoor tank
(1.2 × 0.35 × 0.3 m) or 
cemented pond
(20 × 10 × 0.5 m)

Organic manure and 
inorganic fertilizer

S. polyrrhiza pH 6.98–7.91 or pH 7.76–
8.30/26.0 μmol m−2 s−1/9.4–26.7 °C or 
30.5–33.0 °C/10 days

[54]

 180 × 103 L Outdoor pond
(300 m2 × 0.6 m)

Pig effluent lagoon or well 
water

S. polyrrhiza pH 8.4 or 
7.2/2.89 mmol m−2 s−1/20–30 °C

[106]

 7620 × 103 L Artificially designed pond
(518 × 12 × 0.3 m)

Ground water, surface 
water, and well water

Lemna spp. Direct or indirect sunlight (Florida, 
United States)

[37, 162]
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