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Hispidin attenuates bleomycin‑induced 
idiopathic pulmonary fibrosis 
via an anti‑oxidative effect in A549 cells
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Abstract 

Idiopathic pulmonary fibrosis (IPF) is a serious and irreversible chronic lung disease. Bleomycin (BLM) is an anticancer 
drug, which can cause severe lung toxicity. The main target of oxidative stress-induced lung injury is alveolar epithelial 
cells, which lead to interstitial fibrosis. The present study investigated whether hispidin (HP), which has excellent anti‑
oxidant activity, attenuates bleomycin-induced pulmonary fibrosis via anti-oxidative effects in A549 cells. We found 
that hispidin reduced bleomycin-induced fibrosis of A549 cells by reducing reactive oxygen species (ROS) levels and 
inhibiting epithelial-mesenchymal transition. Taken together, our data suggest that hispidin has therapeutic potential 
in preventing bleomycin-induced pulmonary fibrosis.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a serious and irre-
versible chronic lung disease [1]. IPF has the following 
characteristics: Excessive accumulation of fibroblasts, 
extensive deposition of the extracellular matrix, alveolar 
structure damage, and a gradual decline of lung func-
tion [2]. Smoking, sawdust, sand, and silica exposure may 
lead to repeated injury of alveolar epithelial cells. Many 
studies have shown that injury and apoptosis of alveo-
lar epithelial type II cells are important early features of 
IPF [3]. IPF is accompanied by epithelial cell apoptosis, 
epithelial-mesenchymal transition (EMT) and matrix 

metalloproteinase expression [4]. Oxidative stress is 
reportedly involved in the development of alveolar injury, 
inflammation, and fibrosis [5]. In recent years, the inci-
dence rate of IPF has increased. Among the environmen-
tal factors, lung cell damage caused by inhalable particles 
and drug-induced interstitial lung disease have attracted 
extensive attention. For example, bleomycin-induced pul-
monary fibrosis has become a serious clinical problem 
[6]. Nintedanib and pirfenidone are the only two antifi-
brotic drugs approved for the treatment of this disease 
worldwide, and both drugs can actively interfere with cel-
lular redox state and oxidative stress [7, 8]. However, all 
types of treatments failed to change the natural course of 
the disease, except for lung transplantation; therefore, a 
new and effective way of treatment is urgently required.

Bleomycin (BLM) is a complex glycopeptide with 
antitumor properties. It is often used as an antibiotic to 
treat various cancers in the clinic. Compared with other 
tissues, lungs lack the bleomycin-hydrolyzing enzyme. 
After bleomycin reaches the lung tissue, it leads to the 
production of reactive oxygen species (ROS) under the 
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action of iron and oxygen, which increases oxidative 
stress, leading to severe pulmonary toxicity [9]. Oxida-
tive stress is an important molecular mechanism, lead-
ing to fibrosis in many organs [10]. The main target of 
oxidative stress-induced lung injury is alveolar epithelial 
cells, which can lead to fibrosis [11]. The toxicity of BLM 
is directly caused by oxidative damage, and the produc-
tion of intracellular ROS leads to inflammation and fibro-
sis [12]. The existing research shows that BLM causes the 
increase of ROS levels in A549 cells, which leads to oxi-
dative stress in cells. In addition, BLM, through TGF-β/
Smad signaling pathway, induces EMT of A549 cells [13]. 
Many studies have shown that various plant extracts and 
active components have significant effects on inhibit-
ing BLM-induced pulmonary fibrosis. Emodin alleviates 
BLM-induced pulmonary fibrosis in rats through anti-
inflammatory and antioxidant effects [14]. Submicron 
infusion of cinnamaldehyde improves BLM-induced 
IPF by inhibiting inflammation, oxidative stress and 
EMT [15]. Studies have shown that mitochondria play 
an important role in IPF [16]. Some studies suggest that 
ROS can promote EMT in certain types of cells [17] and 
mitochondrial ROS is the key factor of hypoxia-induced 
EMT in alveolar epithelial cells [18]. Here, we showed 
that HP significantly inhibited BLM-induced A549 fibro-
sis by reducing ROS levels, EMT, and mitochondrial 
membrane damage.

Hispidin (HP, 6-(3, 4-dihydroxystyryl)-4-hydroxy-
2-pyrone) and its derivatives are widely distributed in 
edible mushrooms, such as Lentinus edodes [19–21]. HP 
is extracted from Lentinus edodes, which is widely used 
to treat various diseases [16]. Most of these diseases are 
caused by the excessive production of free radicals, espe-
cially ROS. Studies have shown that HP can neutralize 
free radicals and is known for its strong anti-cancer, anti-
oxidant, and DNA damage preventing activities [22]. It 
can also inhibit the growth and migration of tumors [23]. 
HP protects H9c2 cardiomyocytes from hydrogen perox-
ide-induced apoptosis by reducing ROS production and 
activation of Akt/GSK-3β and ERK1/2 signaling pathways 
[24, 25]. At the same time, high concentration of HP can 
lead to high cytotoxicity and induce apoptosis [26]. HP 
can effectively protect min6n β Cells from ROS damage 
[27], C2C12 myotubes from palmitate-induced oxida-
tive stress [28], Caco-2 cells from acrylamide-induced 
oxidative stress [29], and ARPE-19 cells from hydrogen 
peroxide-induced damage by activating Nrf2 signaling 
and upregulating downstream targets, including phase II 
enzyme [30]. HP can prevent the damage caused by oxi-
dative stress by scavenging ROS. Due to different effects 
of HP under different conditions, studying it further may 
help to treat cancer and prevent side effects caused by 
chemotherapy.

In light of the above-mentioned gaps in the field, this 
study aimed to explore the preventive and therapeutic 
effects of hispidin on pulmonary fibrosis.First, bleomycin 
was used to induce pulmonary fibrosis, and then A549 
cells were pretreated with HP. MTT assay and would 
healing test were used to detect cell activity and cell 
migration, respectively, and western blotting was used to 
detect the expression of pulmonary fibrosis- and EMT-
related proteins. Flow cytometry and fluorescent micros-
copy were used to detect intracellular and mitochondrial 
ROS levels, as well as mitochondrial membrane potential. 
Our results will reveal the preventive and therapeutic 
effects of HP on fibrotic lung injury through anti-oxida-
tion and anti-fibrosis activities.

Material and methods
Reagents and antibodies
A549 cell line was purchased from Daqing Hongtu Bio-
technology Co., Ltd. (Heilongjiang, China). PBS and 
DMEM high glucose medium were purchased from 
Hyclone; TE/EDTA, penicillin/streptomycin, (P/S), and 
fetal bovine serum (FBS) from Solarbio; Hispidin (HP) 
from Shanghai Macklin Biochemical Co., Ltd. (Product 
No: H861853); dimethyl sulfoxide (DMSO) from Sigma; 
BLM from Gibco; 4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT reagent from Amreso. All 
antibodies (anti-β-actin, anti-N-cadherin, anti-E-cad-
herin, anti-vimentin, anti-fibronectin, and anti-slug) were 
purchased from Santa Cruz (CA, USA). Dihydroethid-
ium (DHE), Mito-SOX, JC-1, and Hochest stains/probes 
were purchased from Solarbio.

Cell culture
A549 lung cancer cells were cultured in DMEM high glu-
cose medium containing 10% inactivated FBS and 1% P/S 
in a humidified incubator with 5% CO2. BLM (200  μg/
mL) and hispidin (10, 20, or 30 μg/mL) (Additional file 1; 
Fig. S1) were collectively administrated to the A549 cell 
line for 48 h.

Morphological observation
Cells were seeded onto 24-well plates at a density of 
6 × 103 cells/well. Serum-free DMEM was added and 
exposed to treatments accordingly. Images were acquired 
using an inverted microscope after 48 h.

MTT assay
Cell morphology was observed under a light micro-
scope. Cells were seeded onto 96-well plates at a density 
of 6 × 103 cells/well. Serum-free DMEM was added and 
treatments were performed accordingly. MTT solution 
(final concentration of 0.5  mg/ml in media) was then 
added to each well, and the plate was incubated at 37˚C 
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for an additional 4 h. After removing all medium in each 
well, 100  μl of DMSO was added to each well and the 
optical density was measured at 490 nm.

Wound healing assay
Cells were seeded onto 24-well plates at a density of 
2 × 105 cells/well. A scratch was established after the cells 
adhered to the plate. Then, the medium was removed 
and cells were washed with PBS three times. Serum-
free DMEM was added and treatments were performed 
accordingly. Images were acquired using an inverted 
microscope after 0 and 48 h. Image J software was used 
to calculate the scratch area as follows: Area healing 
(%) = [(average gap at 0 h—average gap at 48 h) / average 
gap at 0 h] × 100%.

Fluorescence microscopy
The superoxide anion in mitochondria and mitochon-
drial membrane potential were measured using the flu-
orescent probe MitoSOX/JC-1 and Hoechst dye. Cells 
were seeded onto 24-well plates at a density of 6 × 104 
cells/well. Serum-free DMEM was added and treatments 
were performed accordingly. Followed by washing twice 
with PBS, the cells were incubated with the fluorescent 
probe MitoSOX/JC-1 and Hoechst dye for 15  min at 
37  °C. After the reaction, cells were washed twice with 
PBS and the superoxide anion in mitochondria, as well 
as the mitochondrial membrane potential, were detected 
using an inverted fluorescence microscope.

Flow cytometry
The intracellular ROS were measured by DHE probes in 
cells. Cells were seeded in 24-well plates at a density of 
6 × 104 cells per well. Serum free DMEM medium was 
added and exposed to treatments accordingly, followed 
by PBS wash (twice), as well as DHE and Hoechst incu-
bation for 15 min at 37 °C. After the reaction, cells were 
washed twice with PBS and observed using flow cytom-
etry to detect intracellular ROS levels.

Western blotting
Serum-free DMEM was added to cells and treatments 
were performed accordingly. The cells were recov-
ered and harvested. Harvested cells were lysed (20  mM 
HEPES-OH, pH 7.0; 50 mM NaCl; 10% glycerol and 0.5% 
Triton X 100) and total protein was extracted. Then, pro-
teins were denatured for 5 min, exposed to 12% sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis for 
separation, and transferred into nitrocellulose mem-
branes. Skim milk (5%) was used to block the membranes 
for 30  min at room temperature. They were then incu-
bated with polyclonal rabbit anti-N-cadherin, as well 
as mouse monoclonal anti-E-cadherin, anti-vimentin, 

anti-fibronectin, anti-slug, and anti-β-actin primary 
antibodies (1:1000) at 4  °C overnight. Membranes were 
washed five times with Tris buffered saline containing 
Tween (TBST, 150 mM NaCl, 10 mM Tris HCl (pH 7.5) 
and 0.2% Tween-20) and were subsequently incubated 
with horseradish peroxidase-conjugated goat anti-mouse 
IgG or anti-rabbit IgG for 1 h at room temperature. After 
removing excess antibodies by washing with TBST, spe-
cific conjugates were detected using a chemilumines-
cence detection system according to the manufacturer’s 
protocol.

Statistical analysis
Repeated measures analysis of variance (ANOVA) was 
used to analyze changes in time and differences between 
groups for each experiment. Significance was measured 
using independent-samples t-test. All differences were 
considered statistically significant if the p-value was less 
than 0.05 (*p < 0.05; **p < 0.01; ***p < 0.001). All experi-
ments were performed in triplicates.

Results
BLM inhibits proliferation and promotes fibrosis in A549 
cells
We constructed a cell model of alveolar epithelial cell 
fibrosis in vitro and used BLM was to induce the fibrosis 
of A549 human alveolar epithelial cells. A549 cells were 
treated with BLM (100 or 200  μg/ml) for 48  h. Micro-
scopic observation showed that with the increase in drug 
concentration, cell fibrosis increased, and the MTT assay 
showed that cell viability decreased (Fig.  1a, Additional 
file  1; Fig. S2). Moreover, to detect the change in cell 
migration upon BLM-induced cell fibrosis, we performed 
a wound healing assay. Would healing assay showed that 
the migration of A549 cells was enhanced after treatment 
with BLM for 48 h (Fig. 1b, c). Western blotting results 
showed that expression levels of EMT-related proteins 
N-cadherin, vimentin, fibronectin, and slug were upregu-
lated, and those of E-cadherin were downregulated. A549 
cells developed cellular fibrosis through EMT (Fig.  1d–
h). These results indicated that BLM inhibited cell prolif-
eration and promoted cell migration and fibrosis in A549 
cells.

BLM increases ROS levels and decreases mitochondrial 
membrane potential in A549 cells
After treatment of A549 cells with BLM (100 or 200 μg/
mL) for 48  h, fluorescence microscopy showed that the 
level of intracellular ROS was significantly increased 
(Fig.  2a), and the same effect was also observed using 
flow cytometry (Fig.  2b). Fluorescence microscopy also 
showed that ROS levels in mitochondria increased 
(Fig.  2c) and the mitochondrial membrane potential 
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decreased (Fig.  2d). These results suggested that BLM 
increased ROS levels and caused mitochondrial dysfunc-
tion in A549 cells.

HP inhibits the increase of ROS levels in A549 cells 
and mitochondria dysfunction induced by BLM
A549 cells were treated with BLM (200 μg/mL) and HP 
(10, 20, and 30  μg/mL) for 48  h. Fluorescence micros-
copy showed that HP significantly inhibited the increase 
of ROS levels in cells induced by BLM (Fig.  3a). Flow 
cytometry also showed the same effect (Fig.  3b). At the 
same time, HP significantly inhibited the increase in ROS 
levels and the decrease of membrane potential induced 
by BLM (Fig. 3c, d). These results indicated that HP sig-
nificantly inhibited the increase in ROS levels and mito-
chondrial dysfunction induced by BLM in A549 cells.

HP inhibits BLM‑induced fibrosis in A549 cells
Subsequently, we treated A549 cells with BLM (200 μg/
mL) and HP (10, 20, and 30 μg/mL) for 48 h. Microscopic 
observation showed that HP significantly inhibited BLM-
induced cell fibrosis (Fig.  4a). At the same time, MTT 
assay showed that there was no significant difference in 
the activity of A549 cells treated with BLM alone or com-
bined with HP for 48  h (Fig.  4b). Wound healing assay 
results showed that HP significantly inhibited cell migra-
tion induced by BLM (Fig. 4c, d). Western blotting results 
showed that HP significantly inhibited the changes in the 
expression levels of EMT-related proteins induced by 
BLM, thus inhibiting EMT and cell fibrosis of A549 cells 
(Fig.  4e–i). These results indicated that hispidin signifi-
cantly inhibited the migration and fibrosis of A549 cells 
induced by BLM.

Fig. 1  Bolemycin inhibits the proliferation of A549 cells and promotes fibrosis. a The morphology of cellular fibrosis was observed under the 
microscope. Cell viability was detected using MTT. b, c Cell migration was detected using would healing assay. d The expression levels of 
EMT-related proteins were detected using western blotting. e–h The related protein expression levels are represented as the mean ± standard 
deviation. Data are presented as the mean ± standard error of the mean of three different samples. *P < 0.05, **P < 0.01, and ***P < 0.001 
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Discussion
IPF is a chronic, irreversible and usually fatal lung 
disease [31], which is highly prevalent in the elderly. 
Patients with IPF suffer from long-term cough and 
dyspnea, which is difficult to diagnose, and most 
patients are already at the advanced stage when they 
are diagnosed [32]. Today, the prevalence and inci-
dence rate of IPF is increasing [33, 34] and the survival 
time of patients is about 2–3 years after diagnosis [35]. 
Therefore, there is an urgent need for more effective 
diagnostic and treatment methods. The specific patho-
genesis of the disease is not clear, but more studies have 
shown that alveolar epithelial type II cells can be used 
as a driver of idiopathic pulmonary fibrosis [36] and the 
occurrence of IPF is related to alveolar epithelial cell 
injury [37] and EMT [38]. Moreover, some researchers 

also believe that oxidative stress is closely related to 
pulmonary fibrosis [37, 39].

BLM is an antibiotic used to treat various tumors, but 
it causes severe pneumonia and pulmonary fibrosis [40]. 
The injury and dysfunction of pulmonary epithelial cells 
are considered to be an important initial and central pro-
cess of fibrosis [3], BLM induces the transformation of 
lung epithelial cells into mesenchymal cells through EMT 
process, gradually transforms the morphology of lung 
epithelial cells into mesenchymal phenotype, inhibits the 
proliferation of epithelial cells and further promotes the 
process of fibrosis [3, 13, 36, 38]. In this study, bleomy-
cin was used to construct the pulmonary fibrosis model. 
A549 cells were treated with different concentrations 
of bleomycin for 48 h. The results showed that the cells 
showed obvious fibrosis at the concentration of 200 μg/

Fig. 2  Bolemycin increased the ROS levels of in A549 cells. a Intracellular ROS levels were detected using flow cytometry, b as well as DHE staining. 
c ROS levels in mitochondria were detected using Mito-SOX staining. d The mitochondrial membrane potential was detected using JC-1 staining. 
**P < 0.01, and ***P < 0.001 
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mL. MTT assay showed that the proliferation of cells was 
inhibited at 200  μg/mL. The EMT related proteins also 
changed significantly after BLM treatment. Some studies 
have shown that bleomycin can induce ROS, which may 
be an important reason for lung epithelial cell injury and 
EMT transformation [41]. At the same time, mitochon-
dria in cells are the most important position to produce 
ROS in cells [42], which is closely related to pulmonary 
fibrosis [43]. Therefore, DHE fluorescent dye detection 
showed that intracellular ROS increased significantly 
after BLM treatment, Mito-SOX and JC-1 fluorescent 
dye detection showed that mitochondrial ROS increased 
and mitochondria were damaged. Then we focused on 
HP, which can neutralize free radicals [22]. By further 
searching the data, we found that HP is a protein kinase 
C β Inhibitors, and protein kinase C β overexpression 
can induce fibrosis in human proximal tubular epithe-
lial cells [44]. We speculate that HP may inhibit cellular 
fibrosis. After treating fibrotic cells with HP, we found 
that the level of ROS decreased significantly, fibrotic 

cell morphology and EMT related proteins were signifi-
cantly inhibited, it can be seen from the above that HP 
has a significant inhibitory effect on the fibrosis of A549 
alveolar epithelial cells. The specific mechanism has not 
been explored, but we know that the target signal path-
way of HP is TGF- β/ Smad signal pathway. At the same 
time, studies have shown that anlotinib attenuates BLM 
induced pulmonary fibrosis through TGF-β1 signal-
ing pathway [45], BLM through TGF-β/ Smad signaling 
pathway induces EMT of cultured A549 cells [13], pae-
oniflorin inhibits TGF-β mediated EMT of pulmonary 
fibrosis through Smad dependent pathway, etc. These 
reports suggest that TGF-β/ Smad signaling pathway is 
closely related to the process of pulmonary fibrosis.

Based on the above information, we speculate that 
HP may attenuates BLM induced pulmonary fibrosis by 
TGF- β/ Smad signaling pathway, which will also become 
the focus of our next research. This study will also pro-
vide new ideas for the treatment of IPF.

Fig. 3  Hispidin inhibits bolemycin-induced ROS. a Intracellular ROS levels were detected using flow cytometry, b as well as DHE staining. c ROS 
levels in mitochondria was detected using Mito-SOX staining. d The mitochondrial membrane potential was detected using JC-1 staining. **P < 0.01, 
and ***P < 0.001 
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Additional file 1: Fig. S1. Cell viability was measured by MTT assay. Cells 
were treated with different concentrations of hispidin (HP) (10, 20, 30 
μg/mL) incubated for 48 h. Data are presented as the mean ± standard 
error of the mean of three different samples. *P < 0.05, **P < 0.01, and 
***P < 0.001. Fig. S2. a The morphology of cellular fibrosis was observed 
under the microscope. b Intracellular ROS levels were detected using 
flow cytometry. c, d Cells were treated with different concentrations of  
Bolemycin (BLM) and hispidin (HP) incubated for 48 h. Data are presented 
as the mean ± standard error of the mean of three different samples. *P < 
0.05, **P < 0.01, and ***P < 0.001.
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