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Abstract 

In this study, we use high-throughput sequencing-based metagenomic methods to investigate the differences in 
seasonal structures of the bacterial community and the abundance and diversity of antibiotic resistance genes (ARGs) 
and mobile genetic elements (MGEs) in both shrimp ponds and river water samples downstream of the Day River, 
Ninh Binh, Vietnam. The structure of the central bacterial community, ARGs, and MGEs was found to be regardless of 
the seasons and locations. The predominant phyla found in all samples was Proteobacteria, Bacteroidetes, and Actino-
bacteria. Multi-drug resistance (MDR) genes and transposases are the most dominant ARG types and MGEs, respec‑
tively. Our data showed a higher abundance of bacterial communities, ARGs, and MGEs in the river water during the 
rainy season. There is a significant correlation between the abundance of ARGs, MGEs, and environmental factors. Our 
results indicate that water environments containing ARGs/MGEs carrying bacteria pose a risk to shrimp and human 
health, especially during the rainfall-polluted water season.
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Introduction
Antibiotics are used to treat bacterial infectious diseases 
in human and veterinary medical practices. Farmers 
also administer antibiotics to food-production animals, 
plants, aquaculture, etc., mainly for promoting growth 
and preventing infections [1–3]. However, the misuse of 
antibiotics in clinical situations and in agriculture leads 
to antibiotic residues in animal-derived products and 
environments [4, 5]. Additionally, overusing antibiotics 
provides a selective pressure which facilitates the acqui-
sition of antibiotic resistance genes (ARGs) through 
mutations or horizontal gene transfer—requiring mobile 

genetic elements (MGEs) as important carriers [6–10]. 
Antibiotic resistance poses a significant concern for pub-
lic health because the antibiotic-resistant bacteria asso-
ciated with the animals are often pathogenic to humans, 
cause complicated, untreatable, and prolonged infections 
in humans, and subsequently may lead to higher health-
care costs and even death [5, 11]. Water environments 
like aquaculture farms and rivers in urban areas are 
potential reservoirs for ARG pollution and hot spots of 
horizontal gene transfer [12–15].

Vietnam is a top producers and exporters of aquacul-
ture products [16] and its farmers use antibiotics for dis-
ease treatment and prevention, and to stimulate shrimp/
fish growth [17–19]. Although the Vietnamese govern-
ment authority has issued strict regulations for the use of 
antibiotics in aquaculture [20], some antibiotics are still 
being reported even after they have been banned [21–
23]. As reviewed by Lulijwa et al. [24], Vietnam is one of 
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the leading users of antibiotics. The inappropriate use of 
antibiotics in agriculture is attributed to an emergence 
of drug-resistant pathogens [23, 25]. These factors con-
tribute to the emergence of multi-drug resistant (MDR) 
bacteria in aquaculture and the surrounding environ-
ments. Therefore, research on the bacterial structure and 
diversity, and ARG abundance in water environments is 
urgently needed. Although several studies focused on 
antibiotics and ARG issues in aquaculture environments 
in Southern Vietnam have been done [19, 23, 26–28], the 
status of ARGs in aquaculture and the surrounding envi-
ronment in Northern Vietnam has still not been assessed.

Metagenomic research using next-generation sequenc-
ing techniques is a powerful tool that can be utilized to 
investigate the microbial community and functional 
genomes in various environments [29–34]. To our 
knowledge, application of metagenomics to study antibi-
otic resistance in Vietnam aquaculture environments are 
in their infancy. Determining the structure and composi-
tion of bacterial communities regarding antibiotic resist-
ance in different water systems may aid in controlling the 
spread of antibiotic-resistant elements. The Day River 
basin—one tributary of the Red River system branching 
35 km upstream of Hanoi, is an essential component of 
the flood control system in the Red River, Hanoi, Vietnam 
[35]. Water pollution and degradation are concentrated 
in the middle and downstream areas of these river basins 
[36]. This study used a high-throughput sequencing-
based metagenomic approach to investigate the seasonal 
distribution of microbial communities and antibiotic 
resistance genes in downstream Day River, Ninh Binh, 
Vietnam. The present study provides information both 
on the structure of bacterial communities, ARGs, and 
MGEs in water bodies and the correlation among ARGs, 
MGEs, microbial communities, and environmental fac-
tors. This study can offer insight for further controlling 
the prevalence of ARGs in the aquatic environments of 
Northern Vietnam. By the lack of studies that survey the 
microbial communities and antibiotic resistance genes in 
Northern Vietnam, our result could be the unique data 
that explored the correlation between the abundance 
of ARGs, MGEs, and water environmental parameters 
regarding the seasonal variations.

Material and methods
Sample collection
Sampling sites: water samples at two different loca-
tions—the Day River (including four sites—denoted as 
R1, R2, R3, R4) and three shrimp ponds (outside the Day 
River dike, namely, P1, P2, P3) (Fig. 1, Additional file 1: 
Table  S1) downstream of the Day River in Ninh Binh, 
Vietnam. Sites were sampled in rainy (June—denoted 
as RS) and dry (December—denoted as DS) seansons 

in 2018. Most shrimp ponds outside the Day River dike 
operate a flow-through system that pumps in the cleaned 
river for shrimp farming and discharges wastewater back 
to Day River through a discharge canal, namely DCOD 
(which is directly connected to the river). The wastewater 
from aquaculture ponds inside the Day River dike is col-
lected into a discharge canal (called DCID) connected to 
the river via a trench drain with a concrete sluice gate to 
control water flow. DCOD and DCID samples served as 
reference samples.

Using sterile bottles, water samples were collected from 
each site in triplicates (3 × 500  mL) at a depth of 0.5  m 
from the water surface. All the samples were stored in a 
dark portable icebox and transferred to the laboratory 
within four hours. Physicochemical parameters of the 
water samples were measured by the Institute of Chemis-
try, Vietnam Academy of Science and Technology, and by 
using the Horiba Multiparameter water quality checker 
U-50 (Additional file 1: Table S1).

DNA extraction and sequencing
DNA extraction: Water samples were prefiltered through 
a 15  µm pore size filter then filtered again through the 
mixed cellulose ester gridded membrane filter (Mem-
brane Solutions—USA, pore size 0.22  μm). Total DNA 
was extracted from filtered membranes using the Power 
Soil DNA isolation kit (Qiagen GmbH, Germany).

DNA sequencing: Total DNA extraction of all tripli-
cate samples (collected from each sampling site) were 
pooled together to minimize the potential variations dur-
ing DNA extraction and sent to Macrogen Inc. (Seoul, 
Republic of Korea) for Illumina Novaseq 6000 sequencing 
(150 bp × 2). Our DNA sequences data was submitted to 
Genbank with project accession number PRJNA770010.

Sequence analysis
Raw sequences were screened and trimmed using Pearf 
software (https://​micro​biolo​gy.​se/​softw​are/​petkit/) with 
the following parameters: pearf -q 28 -f 0.25 -t 0.05 -l 
30 to obtain the filtered sequences. The filtered raw 
sequences were mapped against small subunit ribosomal 
RNA (SSU rRNA) sequences using the Metaxa2 soft-
ware [37] (https://​micro​biolo​gy.​se/​softw​are/​metax​a2/) to 
access the microbial community structure.

The filtered raw sequences were mapped against the 
Comprehensive Antibiotic Resistance Database (CARD) 
version 3.0.7 [38] using EDGE script [39] (https://​edge.​
readt​hedocs.​io/​en/​latest/​index.​html) with BWA tool [40] 
(http://​bio-​bwa.​sourc​eforge.​net/) for ARG diversity and 
abundance elucidation.

The filtered raw sequences were also mapped against 
the Mobile Genetic Elements database (MGE) [41] for 
determining MGE composition.

https://microbiology.se/software/petkit/
https://microbiology.se/software/metaxa2/
https://edge.readthedocs.io/en/latest/index.html
https://edge.readthedocs.io/en/latest/index.html
http://bio-bwa.sourceforge.net/
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The filtered raw sequences were used as input for de 
novo assembly in the Megahit software [39] (mega-
hit–min-contig-len 300–presets meta-sensitive -m 0.9) 
to produce contigs. From all assembled contigs, the 
ORFs were predicted by using the Prodigal software 
with option -p meta for metagenomic samples and -c 
option for closed ends of ORFs [40] (prodigal -c -f gbk 
-g 11 -m -n -p meta) and aligned them to CARD (amino 
acid sequences) database using “diamond blastp” [42] 
(https://​www.​wsi.​uni-​tuebi​ngen.​de/​lehrs​tuehle/​algor​
ithms-​in-​bioin​forma​tics/​softw​are/​diamo​nd) (https://​
github.​com/​bbuch​fink/​diamo​nd) with an E value 
threshold of 1e−10, a bit score of 50, and a sequence 
similarity cut-off > 70% to access detail ARGs diversity 
and abundance. In addition, PlasFlow tool (version 1.1) 
was applied to classify the genome location (chromo-
some- and plasmid-like contigs) of all the assembled 
long contigs (> 1000  bp) [43]. The ORFs were normal-
ized by the number of copies of the 16S rRNA gene—
estimated using the barrnap 0.9 tool (https://​hpc.​ilri.​
cgiar.​org/​barrn​ap-​softw​are) (https://​vicbi​oinfo​rmati​cs.​
com/​softw​are.​barrn​ap.​shtml). Our workflow is summa-
rized in Fig. 2.

Statistical analysis
We used Microsoft Excel tools F.test and T.test for statis-
tical analyses. The Pearson correlation was used to assess 
correlations among the abundance of ARGs, MGEs, 
microbial communities, and environmental factors.

Results
Microbial community composition and abundance
At the phylum level, we detected a total of 37 bacterial 
phyla in all samples; with Proteobacteria, Bacteroidetes, 
and Actinobacteria are the most dominant phyla (Fig. 3). 
The bacterial community structure shows a similar pat-
tern between all samples at the phylum level. The river 
water samples collected during the rainy season (include 
R1-RS, R2-RS, R3-RS, and R4-RS, namely, R-RS) show a 
significantly higher relative abundance of Proteobacte-
ria and Bacteroidetes than the other samples (including 
P1-RS, P2-RS, and P3-RS, namely, P-RS; R1-DS, R2-DS, 
R3-DS, and R4-DS, namely, R-DS; P1-DS, P2-DS, and 
P3-DS, namely, P-DS). The DCOD-RS displays a similar 
pattern with R-RS, while DCID-RS shows similarity with 
P-RS.

Fig. 1  Sampling locations. Schematic diagram of sampling locations in Day River Downstream, Ninh Binh, Vietnam. P1, P2, P3: three different 
shrimp pond sites; R1, R2, R3, R4: four different river sites. DCOD, DCID: discharged canals. P1, P2, P3, R1, R2, R3, R4 and DCOD are located outside the 
Day River dike. DCID is located inside the Day River dike

https://www.wsi.uni-tuebingen.de/lehrstuehle/algorithms-in-bioinformatics/software/diamond
https://www.wsi.uni-tuebingen.de/lehrstuehle/algorithms-in-bioinformatics/software/diamond
https://github.com/bbuchfink/diamond
https://github.com/bbuchfink/diamond
https://hpc.ilri.cgiar.org/barrnap-software
https://hpc.ilri.cgiar.org/barrnap-software
https://vicbioinformatics.com/software.barrnap.shtml
https://vicbioinformatics.com/software.barrnap.shtml
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We found a total of 335 bacterial families in all sam-
ples; of these, 38 families have a relative abundance 
greater than 1% in at least one sample (Additional file 1: 
Fig. S1A). The relative abundance at the family level in 
R-RS is higher than in R-DS, P-RS, and P-DS—mainly 
dominated by Comamonadaceae, Moraxellaceae, Pseu-
domonadaceae, Cytophagaceae, and Sphingomonadaceae 
(p < 0.05). The relative abundance of Microbacteriaceae is 
higher in P-RS than in others. We observe typical fami-
lies associated with opportunistic pathogens, including 
Burkholderiaceae, Neisseriaceae, and Xanthomonadaceae 
(Additional file 1: Fig. S1A) in the river and shrimp pond 
water samples.

We found 34 bacterial genera that have a relative abun-
dance greater than 1% in at least one sample (Additional 
file  1: Fig. S1B). Acinetobacter, Cellvibrio, Arcicella, 
Novosphingobium, and Rhodobacter are more abundant 
in R-RS (Additional file  1: Fig. S1B), while Candidatus 
Pelagibacter was found to be more abundant in P-RS 
(Additional file  1: Fig. S1B). The bacteria with relative 
abundance greater than 0.1% in at least one sample in 
R-RS differed at the species level from R-DS, P-RS, P-DS 
(Additional file  1: Fig. S1C). Opportunistic pathogens, 

including Acinetobacter baumannii, Acinetobacter junii, 
Acinetobacter sp., Pseudomonas aeruginosa were mainly 
observed in R-RS. Otherwise Candidatus Pelagibac-
ter ubique, Candidatus Pelagibacter sp. IMCC9063, and 
Candidatus Aquiluna rubra were the most prevalent spe-
cies of P-RS, R-DS, P-DS.

ARGs composition, abundance, and resistance mechanisms
Our Illumina high-throughput sequencing data show 
that the ARG composition of each sample was quite 
similar (Fig. 4A). We found a total of 27 ARG types (92 
subtypes) categorized by drug class antibiotic. The pre-
dominant ARG type was MDR, with ARG conferring 
resistance to two or more drug class categories, fol-
lowed by rifamycin, aminoglycoside, and sulfonamide. 
Although ARG composition in each sample was not 
different, ARG abundance was higher in R-RS samples 
(Fig.  4A). Among different MDRs, the most dominant 
subtype is MDR14a. MDR14a is a subtype of multi-drug-
resistant-gene that resists 14 drug classes, including 
macrolide, fluoroquinolone, monobactam, carbapenem, 
cephalosporin, cephamycin, penam, tetracycline, peptide, 

Fig. 2  Workflow diagram
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aminocoumarin, diaminopyrimidine, sulfonamide, phen-
icol, and penem (Additional file 1: Fig. S2A).

Using total metagenome sequencing contigs, we found 
206 ARGs in our samples. Additional file  1: Fig. S2B 
shows the abundance of the top 15 ARGs from each sam-
ple. The most abundant ARGs were mexK, MuxB, and 
ugd with the copy of ARG per 16S rRNA gene value as 
0.046, 0.045, and 0.038, respectively. Abundance values of 
individual ARGs in R-DS and P-DS were the lowest with 
the copy of ARG per 16S rRNA gene value of each ARG 
below 0.01, except ugd of P-DS.

As to ARG resistance mechanisms, our results in 
Fig.  4B indicate that “antibiotic efflux” is the predomi-
nant resistant mechanism in all samples, followed by 
"antibiotic target alteration combining antibiotic target 
replacement", "antibiotic inactivation", "antibiotic target 
alteration", "antibiotic target protection", "antibiotic tar-
get replacement", "reduced permeability to antibiotic", 
and "antibiotic efflux combining reduced permeability to 
antibiotic".

Composition and abundance of MGEs
We detected a total of 238 MGEs representing four 
groups including plasmids, transposon, integrons, and 
insertion sequences (IS) in all samples. Figure  5A dem-
onstrates that the total quantity of transposon-like MGE 

was the most predominant, followed by IS -like MGEs, 
plasmid-like MGEs, and integron-like MGEs. Figure  5B 
shows the top 15 MGEs from each sample, among which 
tnpA is the most abundant MGE, followed by is9, iscrsp1, 
istB, and istA.

Correlation among ARGs, MGEs, microbial communities, 
and environmental factors
Correlation between bacterial communities 
and environmental factors
Table  1 indicates that the relative abundance of Proteo-
bacteria and Bacteroidetes phyla strongly and positively 
correlated with pH and NO3

− concentration (R > 0.75, 
p-value < 0.05), whereas the relative abundance of Act-
inobacteria phylum significantly and positively correlates 
with temperature and pH. Conductivity, TDS, and salin-
ity significantly and negatively affect the relative abun-
dance of Proteobacteria (R < − 0.5, p-value < 0.05).

Correlation between ARGs/MGEs and environmental 
factors
Our results revealed that the abundance of ARGs 
positively correlates with temperature, pH, and NO3

− 
concentration (R > 0.5, p-value < 0.05), whereas it 
negatively correlates with conductivity, TDS, and salt 
concentration (R < −  0.5, p-value < 0.05) (Table  2). 

Fig. 3  Seasonal Distribution of microbial communities of river and shrimp pond water samples at the phylum level. “Other classified phyla” indicates 
the sum of the abundance of phyla with their maximum relative abundance percentages lower than 1% in any sample. P1, P2, P3: three different 
shrimp pond sites; R1, R2, R3, R4: four different river sites. DCOD, DCID: discharged canals. P1, P2, P3, R1, R2, R3, R4 and DCOD located outside the 
Day River dike. DCID located inside the Day River dike. RS: rainy season; DS: dry season
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The abundance of MGEs also significantly positively 
correlates with NO3

− concentration and negatively 
correlates with conductivity, TDS, and salt concentra-
tion. Interestingly, the abundance of plasmids signifi-
cantly correlates with temperature but not with pH. In 

contrast, the abundance of integrons and insertional 
sequences significantly but weakly correlates with pH 
(p-value < 0.05) but does not correlate with tempera-
ture. However, temperature and pH do not signifi-
cantly affect the abundance of transposons (Table 2).

Fig. 4  Abundance of main ARGs resistance types. ARGs resistance types categorized by drug class resistance type (A) and ARGs resistance 
mechanisms (B). P1, P2, P3: three different shrimp pond sites; R1, R2, R3, R4: four different river sites. DCOD, DCID: discharged canals. P1, P2, P3, R1, 
R2, R3, R4 and DCOD located outside the Day River dike. DCID located inside the Day River dike. RS: rainy season; DS: dry season
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Fig. 5  The Distribution and abundance of MGE types. A The abundance values of MGE group. B The abundance values of the top 15 MGE types of 
each sample. P1, P2, P3: three different shrimp pond sites; R1, R2, R3, R4: four different river sites. DCOD, DCID: discharged canals. P1, P2, P3, R1, R2, 
R3, R4 and DCOD located outside the Day River dike. DCID located inside the Day River dike. RS: rainy season; DS: dry season
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Correlation between ARGs or MGEs with bacterial 
communities
Our data show that the abundance of MGEs and ARGs 
(top ARGs except for glycopeptide- and mupirocin-
resistant-gene) strongly and positively correlated with 
Proteobacteria and Bacteroidetes phyla (p-value < 0.001) 
(Table  3). The abundance of Actinobacteria phylum sig-
nificantly correlates with rifamycin-, aminocoumarin-, 
and mupirocin-resistant-gene (Table  3). Additionally, 
the relative abundance of typical species associated 
with opportunistic pathogens including Acinetobacter 
baumannii, Acinetobacter junii, Acinetobacter sp., and 
Pseudomonas aeruginosa has a positively strong correla-
tion with the abundance of ARGs and MGEs (R > 0.79, 
p-value < 0.001) (Table 4, Additional file 1).

Correlation between ARGs and MGEs
Table  5 shows that the abundance of total ARGs posi-
tively and strongly correlates with the abundance of 
total MGEs (R = 0.868, p-value < 0.0001). Among the 
14 most abundant ARG types, ARG conferring resist-
ance to mupirocin has a weak and insignificant cor-
relation with all types of MGEs. The abundance of 

penam-resistant-gene significantly correlates with inte-
grases and insertional sequences. The abundance of ami-
nocoumarin-resistant-gene significantly correlates with 
transposases, intergrases, and insertional sequences. The 
abundance of all 11 remaining ARGs has a significant 
correlation with both total MGEs and individual MGE 
types (R > 0.5) (Table 5). The correlation of ARG confer-
ring resistance to sulfonamide with intergrases is strong-
est (R = 0.969, p-value < 0.0001), followed by MDRs, 
macrolide, fluoroquinolone (R > 0.85, p-value < 0.001).

Discussion
Bacterial community composition and abundance
In the present study, we found that bacterial commu-
nity structures at the phylum level differed slightly 
by season (rainy vs. dry) or location (river vs. shrimp 
pond). Proteobacteria, Bacteroidetes, and Actinobacte-
ria were the most dominant phyla in all water samples 
collected (Fig.  3), consistent with the previous studies 
done in Vietnam [26, 44], China [29, 45], and the US 
[32]. The relative abundance of Proteobacteria and 
Bacteroidetes are significantly different compared to 
others (not show data), suggesting that environmental 

Table 1  Pearson correlation between the relative abundance of bacterial communities and the indicated environment factors

TDS Total Dissolved Solids

***p-value < 0.001

Pearson correlation Proteobacteria Bacteroidetes Actinobacteria

R p-value R p-value R p-value

Environmental factors

 Temperature 0.420 0.083 0.415 0.086 0.576 0.012

 pH 0.538 0.021 0.498 0.035 0.625 0.006

 NO3
− 0.854 0.797 *** 0.276 0.268

 Conductivity − 0.528 0.024 − 0.425 0.079 − 0.369 0.131

 TDS − 0.533 0.023 − 0.430 0.075 − 0.374 0.126

 Salt − 0.511 0.030 − 0.407 0.094 − 0.363 0.139

Table 2  Pearson correlation among the abundance between ARGs, MGEs, and environment factors

TDS Total Dissolved Solids

***p-value < 0.001

Pearson correlation Temperature pH NO3
− Conductivity TDS Salt

R p value R p value R p value R p value R p value R p value

Total ARGs 0.549 0.018 0.679 0.002 0.824 *** − 0.691 0.0015 − 0.694 0.0014 − 0.675 0.002

Total MGEs 0.464 0.053 0.467 0.051 0.791 *** − 0.572 0.013 − 0.575 0.013 − 0.562 0.015

Plasmids 0.548 0.019 0.411 0.090 0.678 0.002 − 0.512 0.030 − 0.515 0.029 − 0.505 0.033

Integrases 0.453 0.059 0.554 0.017 0.837 *** − 0.564 0.015 − 0.568 0.014 − 0.549 0.018

Insertional sequences 0.440 0.067 0.487 0.040 0.832 *** -0.583 0.011 − 0.587 0.011 − 0.571 0.013

Transposases 0.454 0.058 0.466 0.051 0.791 *** − 0.572 0.013 − 0.575 0.013 − 0.562 0.015
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factors may affect the abundance of bacterial commu-
nities, especially on Proteobacteria and Bacteroidetes. 
The abundance of the bacterial community found in the 
river water during the rainy season includes the follow-
ing families: Comamonadaceae, Moraxellaceae, Pseu-
domonadaceae, Cytophagaceae, and Microbacteriaceae 
(Additional file 1: Fig. S1A); genera: Acinetobacter, Cell-
vibrio, Arcicella, Novosphingobium, Rhodobacter, and 
Candidatus Pelagibacter (Additional file  1: Fig. S1B). 
Comamonadacea is often associated with high nutrient 
conditions such as urban streams, soil, activated sludge, 
and wastewater [46–48]. Typical families associated 
with opportunistic pathogens were also observed, 
such as Burkholderiaceae, Neisseriaceae, Xanthomona-
daceae. The following species were found to be most 
abundant in the river water during the rainy season: 
Acinetobacter sp., Pseudomonas aeruginosa, Acineto-
bacter baumannii, Acinetobacter junii, Pseudomonas 
stutzeri, Pseudomonas pseudoalcaligenes. These bac-
teria are potentially pathogenic and could cause many 
diseases such as urinary tract infection, pneumonia, 
meningitis, dermatitis, and are the primary cause of 
nosocomial infections [49]. The noticeable detection of 

these bacteria in both the river water and shrimp ponds 
suggests that the Day River Downstream can be a reser-
voir of pathogenic bacteria and thereby pose potential 
risks to shrimp and human health, especially during the 
rainy season.

ARGs and MGEs composition and abundance
Our data revealed that the pattern of major ARGs 
and MGEs just slightly varies by season and location. 
Overall, the abundance of ARGs and MGEs is higher 
in the river water during the rainy season (Figs. 4 and 
5). These results suggest that the quantity of ARGs and 
MGEs might relate to each other. Presumably, rainfall 
might bring pollutants from the soil into the natural 
water bodies. This may lead to intensive pollution of 
the natural water bodies, increase the amount of ARGs 
[50], and even stimulate the river water flow to bring 
contaminants and ARGs into the downstream environ-
ment [51], changing the physicochemical properties of 
the water environment. Once the water environment 
becomes contaminated with ARGs, the ARGs will per-
sist as pollutants and pose a challenge to eliminate [11, 
52].

Table 3  Pearson correlation among the abundance of ARGs, MGEs, and bacterial communities at the phylum level

***p-value < 0.001

Pearson correlation Proteobacteria Bacteroidetes Actinobacteria

R p-value R p-value R p-value

ARGs

 Total ARGs 0.894 *** 0.800 *** 0.158 0.531

 MDRs 0.897 *** 0.792 *** 0.047 0.852

 Rifamycin 0.594 0.009 0.580 0.012 0.695 0.0014

 Aminoglycoside 0.697 0.0013 0.657 0.003 0.088 0.728

 Sulfonamide 0.937 *** 0.892 *** − 0.088 0.728

 Macrolid 0.898 *** 0.886 *** 0.012 0.961

 Aminocoumarin 0.547 0.019 0.497 0.036 0.589 0.010

 Tetracycline 0.700 0.0012 0.529 0.024 0.074 0.770

 Phenicol 0.813 *** 0.697 0.0013 0.042 0.869

 Fluoroquinolone 0.863 *** 0.688 0.0016 − 0.027 0.915

 Mupirocin 0.306 0.217 0.234 0.351 0.842 ***

 Penam 0.511 0.030 0.461 0.055 − 0.044 0.861

 Diaminopyrimidine 0.753 *** 0.528 0.025 − 0.148 0.559

 Peptide 0.595 0.009 0.475 0.046 − 0.113 0.656

 Glycopeptide 0.040 0.876 0.041 0.873 0.001 0.997

MGE

 Total MGEs 0.886 *** 0.860 *** 0.002 0.994

 Plasmids 0.808 *** 0.798 *** − 0.060 0.813

 Integrases 0.951 *** 0.874 *** − 0.030 0.907

 Insertional sequences 0.909 *** 0.910 *** 0.043 0.867

 Transposases 0.883 *** 0.854 *** 0.004 0.988
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Overall, MDR- (especial MDR14a subtype), rifamy-
cin- and aminoglycoside-resistant-genes are predomi-
nant in both shrimp ponds and the Day River (Fig.  4A; 

Additional file  1: Fig. S2A), suggesting that the above 
antibiotics are the most prevalent antibiotics consumed 
in the study area. Previous studies have indicated that 
phenicol, tetracycline, and sulfonamide were commonly 
used in Vietnam [19, 27, 53, 54]. Our data is consistent 
with Ronald et al. [24] that Vietnam is one of the leading 
users of antibiotic compounds [24].

On the other hand, transposases MGEswere predomi-
nant in all samples collected (Fig. 5A). Transposases and 
integrases are the main acquisition drivers of ARGs by 
MGEs [55]. TnpA and intI1 are important MGE markers, 
frequently found in various environments [56, 57]. Class 
1 integron (intI1) might be a good indicator of antibiotic 
resistance associated with anthropogenic pollution due 
to the positive correlations with ARGs and anthropogenic 
pollution [58]. Our data revealed that tnpA is the most 
abundant type of transposase, and intI1 was in the top 
15 MGEs of each sample (Fig. 5B). We also found a sig-
nificant correlation between ARGs and MGEs (Table 5). 
Thus, pollution from human activity might contribute to 
antibiotic resistance.

Correlation between bacterial communities 
and environmental factors
Different physicochemical properties (e.g. pH, tempera-
ture, NO3

−, TDS, salinity) and antibiotic usage patterns 
lead to variation in the bacterial community in aquatic 
environments [59–62]. Our data shows that pH affected 
the relative abundance values of all three of the most 
abundant bacterial phyla (Proteobacteria, Bacteroidetes, 

Table 4  Pearson correlation among the abundance of ARGs, 
MGEs, and bacterial communities at the species level

***p-value < 0.001

Pearson correlation Total ARGs Total MGEs

R p-value R p-value

 Bacterial species

 Emticicia oligotrophica 0.903 *** 0.928 ***

 Flectobacillus sp. WG3 0.869 *** 0.761 ***

 Acidovorax sp. BSB421 0.869 *** 0.839 ***

 Acinetobacter sp. 0.868 *** 0.845 ***

 Chromobacterium violaceum ATCC 
12472

0.862 *** 0.635 0.005

 Vogesella perlucida 0.861 *** 0.660 0.003

 Arcicella sp. HME7208 0.853 *** 0.846 ***

 Acinetobacter baumannii 0.851 *** 0.827 ***

 Bacterium SM2-6 0.845 *** 0.828 ***

 Pseudomonas aeruginosa 0.823 *** 0.909 ***

 Comamonadaceae bacterium b4M 0.802 *** 0.764 ***

 Acinetobacter junii 0.797 *** 0.915 ***

 Catellibacterium sp. Orc-4 0.748 *** 0.824 ***

 bacterium 10RO2 0.736 *** 0.540 0.021

 beta proteobacterium IN5 0.710 0.001 0.710 0.001

 Pseudomonas pseudoalcaligenes 0.687 0.0016 0.827 ***

 Pseudomonas stutzeri 0.563 0.015 0.635 0.005

Table 5  Pearson correlation between the abundance of ARGs and the abundance of MGEs

***p-value < 0.001

Pearson correlation MGEs

Total MGEs Plasmids Integrases Insertional sequences Transposases

R p value R p value R p value R p value R p value

 ARGs

 Total ARGs 0.868 *** 0.834 *** 0.946 *** 0.871 *** 0.863 ***

 Sulfonamide 0.901 *** 0.835 *** 0.969 *** 0.919 *** 0.897 ***

 MDRs 0.893 *** 0.879 *** 0.962 *** 0.879 *** 0.888 ***

 Macrolide 0.877 *** 0.814 *** 0.951 *** 0.910 *** 0.872 ***

 Fluoroquinolone 0.751 *** 0.704 0.001 0.883 *** 0.747 *** 0.748 ***

 Peptide 0.699 0.001 0.615 0.007 0.688 0.002 0.683 0.002 0.703 0.001

 Phenicol 0.687 0.002 0.592 0.010 0.835 *** 0.726 0.001 0.684 0.002

 Aminoglycoside 0.643 0.004 0.550 0.018 0.744 *** 0.675 0.002 0.642 0.004

 Diaminopyrimidine 0.586 0.011 0.507 0.032 0.745 *** 0.587 0.010 0.587 0.010

 Rifamycin 0.547 0.019 0.502 0.034 0.585 0.011 0.585 0.011 0.542 0.020

 Tetracycline 0.524 0.026 0.440 0.067 0.695 0.001 0.562 0.015 0.521 0.027

 Aminocoumarin 0.474 0.047 0.396 0.103 0.554 0.017 0.530 0.024 0.471 0.049

 Penam 0.467 0.051 0.413 0.088 0.596 0.009 0.501 0.034 0.463 0.053

 Mupirocin 0.163 0.518 0.051 0.841 0.235 0.348 0.223 0.374 0.165 0.514
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Actinobacteria) (Table  1). Previous studies have indi-
cated that pH value is one of the most significant envi-
ronmental factors influencing the microbial communities 
of freshwater [63–69]. In addition, NO3

− concentration 
strongly and positively correlates with the two most 
abundant phyla; Proteobacteria and Bacteroidetes. Con-
ductivity, TDS, and salinity significantly negatively cor-
related with the relative abundance of Proteobacteria. As 
mentioned above, Proteobacteria and Bacteroidetes are 
substantially more abundant in the river water during the 
rainy season. We also observe that during the rainy sea-
son, the pH value and NO3

− concentration of the river 
water increases, while the salinity, TDS, and conductiv-
ity decrease (Additional file  1: Table  S1), which might 
facilitate the growth of Proteobacteria and Bacteroidetes, 
contributing to the emerging abundance of these bacte-
rial communities. Proteobacteria play essential roles in 
denitrification, phosphorus removal, and organic degra-
dation [70]. Bacteroidetes decompose complex organic 
compounds and polymers to create simpler molecules 
for other microorganisms’ utilization [71]. Actinobac-
teria decompose tough compounds and certain toxic 
compounds [72]. These bacteria might play a significant 
contribution to removing river water pollutants during 
the rainy season and therefore may be why there is a high 
abundance of them in our samples.

ARGs mechanisms, and correlation between ARGs 
and MGEs
The primary antibiotic resistance mechanism used in the 
shrimp pond water is quite similar to those in the river 
water, "antibiotic efflux", followed by "antibiotic target 
alteration combining antibiotic target replacement" is 
quite similar to the mechanism used in the river water 
(Fig.  4B). Moreover, the ARGs belonging to "resistance 
nodulation cell division (RND) antibiotic efflux pump" 
(including MexK, MuxB, acrB, MexF, adeF, mtrA, MexB, 
ceoB, adeJ, adeI, CRP, OprM, OprN, mdtB, and OpmH), 
"pmr phosphoethanolamine transferase" (ugd), and "mul-
tidrug and toxic compound extrusion (MATE) trans-
porter" (pmpM) are the most abundance ARGs found in 
all samples. These results suggest that "antibiotic efflux" is 
the most abundant mechanism, thus intrinsic resistance 
mechanisms play essential roles in water environments in 
this study.

MGEs are crucial in transferring ARGs to new hosts to 
generate new resistant strains through horizontal gene 
transfer. Metagenomic studies observed the horizontal 
co-transfer of ARGs and MGEs [73–75]. Our data reveals 
that the abundance of ARGs and MGEs is strongly and 
significantly correlated (Table  5). This result suggests 
that horizontal gene transfer might also contribute to the 

co-transfer of ARGs and MGEs, resulting in antibiotic 
resistance formation at the Day River downstream.

Correlation of ARGs/MGEs with bacterial communities 
and environmental factors
In our study, the abundance of ARGs and MGEs is 
strongly correlated with Proteobacteria and Bacteroidetes 
(Table  3). Jian-Hua Wang et  al. indicated that Proteo-
bacteria carried more resistance genes than other phyla 
[76]. The dispersion of ARGs among pathogenic bacteria 
already had a significant effect on shrimp cultures world-
wide, linked to massive losses in production [77]. Thi Thu 
Hang Pham et al. indicated that multi-resistant bacteria 
in intensive shrimp cultures might disseminate in the 
natural environment [78]. Thus, current water environ-
ments containing ARGs/MGEs carrier bacteria pose a 
risk of the dispersion of ARGs among pathogenic by hor-
izontal gene transfer.

Our data also revealed that the abundance of ARGs 
and MGEs positively correlates with temperature, pH, 
and NO3

− concentration, whereas negatively corre-
lates with conductivity, TDS, and salt concentration 
(Table 2). However, the correlation of MGEs with tem-
perature and pH was found to be insignificant. This 
might be due to the temperature specifically affect-
ing the abundance of plasmids, while the pH affecting 
integrons and insertional sequences. The NO3

− con-
centration affected all types of MGEs (Table 2). Thus, 
our data suggest environmental factors are associ-
ated with ARG abundance and MGEs in the Day River 
downstream.
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