Skip to main content
  • Review Article
  • Published:

Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance compounds

Abstract

Phenylpropanoids are common aromatic compounds synthesized by plants that are often used as starting compounds for the production of various flavor and fragrance compounds. The use of bacterial metabolism as a means to produce valueadded compounds from natural resources has been given much attention as an alternative method to replace conventional chemical syntheses. This review describes bacterial metabolisms of the phenylpropanoid compounds trans-anethole, isoeugenol, and isosafrole to better understand efficient production of natural fragrance and other value-added compounds.

References

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H, and Momenbeik F (2011) Candida galli strain PGO6: a novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic acid. Curr Microbiol 62, 990–998.

    Article  CAS  Google Scholar 

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H, and Momenbeik F (2012) Conversion of isoeugenol to vanillin by Psychrobacter sp. strain CSW4. Appl Biochem Biotechnol 166, 1–12.

    Article  CAS  Google Scholar 

  • Barghini P, Di Gioia D, Fava F, and Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact 6, 13.

    Article  Google Scholar 

  • Chen HP, Chow M, Liu CC, Lau A, Liu J, and Eltis LD (2012) Vanillin catabolism in Rhodococcus jostii RHA1. Appl Environ Microbiol 78, 586–588.

    Article  CAS  Google Scholar 

  • Han D, Kurusarttra S, Ryu JY, Kanaly RA, and Hur HG (2012a) Production of natural fragrance aromatic acids by coexpression of trans-anethole oxygenase and p-anisaldehyde dehydrogenase genes of Pseudomonas putida JYR-1 in Escherichia coli. J Agric Food Chem 60, 11972–11979.

    Article  CAS  Google Scholar 

  • Han D, Ryu JY, Kanaly RA, and Hur HG (2012b) Isolation of a gene responsible for the oxidation of trans-anethole to para-anisaldehyde by Pseudomonas putida JYR-1 and its expression in Escherichia coli. Appl Environ Microbiol 78, 5238–5246.

    Article  CAS  Google Scholar 

  • Hua D, Ma C, Lin S, Song L, Deng Z, Maomy Z et al. (2007) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130, 463–470.

    Article  CAS  Google Scholar 

  • Humphreys JM and Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5, 224–229.

    Article  CAS  Google Scholar 

  • Jin J, Mazon H, van den Heuvel RH, Janssen DB, and Fraaije MW (2007) Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 274, 2311–2321.

    Article  CAS  Google Scholar 

  • Kasana RC, Sharma UK, Sharma N, and Sinha AK (2007) Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol 54, 457–461.

    Article  CAS  Google Scholar 

  • Kaur B and Chakraborty D (2013) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169,1353–1372.

    Article  CAS  Google Scholar 

  • Krings U and Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49, 1–8.

    Article  CAS  Google Scholar 

  • Kurlemann N, Lara M, Pohl M, Kroutil W, and Liese A (2009) Asymmetric synthesis of chiral 2-hydroxy ketones by coupled biocatalytic alkene oxidation and C-C bond formation. J Mol Catal B-Enzym 61, 111–116.

    Article  CAS  Google Scholar 

  • Longo MA and Sanroman MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44, 335–353.

    CAS  Google Scholar 

  • Newberne P, Smith RL, Doull J, Goodman JI, Munro IC, Portoghese PS et al. (1999) The FEMA GRAS assessment of trans-anethole used as a flavouring substance. Food Chem Toxicol 37, 789–811.

    Article  CAS  Google Scholar 

  • Overhage J, Priefert H, and Steinbuchel A (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199. Appl Environ Microbiol 65, 4837–4847.

    CAS  Google Scholar 

  • Passreiter CM, Wilson J, Andersen R, and Isman MB (2004) Metabolism of thymol and trans-anethole in larvae of Spodoptera litura and Trichoplusia ni (Lepidoptera: Noctuidae). J Agric Food Chem 52, 2549–2551.

    Article  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ et al. (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72, 745–755.

    Article  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, and Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56, 296–314.

    Article  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, and Steinbuchel A (1997) Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 179, 2595–2607.

    CAS  Google Scholar 

  • Ryu J, Seo J, Lee Y, Lim Y, Ahn JH, and Hur HG (2005) Identification of syn- and anti-anethole-2,3-epoxides in the metabolism of trans-anethole by the newly isolated bacterium Pseudomonas putida JYR-1. J Agric Food Chem 53, 5954–5958.

    Article  CAS  Google Scholar 

  • Ryu JY, Seo J, Ahn JH, Sadowsky MJ, and Hur HG (2012) Transcriptional control of the isoeugenol monooxygenase of Pseudomonas nitroreducens Jin1 in Escherichia coli. Biosci Biotechnol Biochem 76, 1891–1896.

    Article  CAS  Google Scholar 

  • Ryu JY, Seo J, Park S, Ahn JH, Chong Y, Sadowsky MJ et al. (2013) Characterization of an isoeugenol monooxygenase (Iem) from Pseudomonas nitroreducens Jin1 that transforms isoeugenol to vanillin. Biosci Biotechnol Biochem 77, 289–294.

    CAS  Google Scholar 

  • Ryu JY, Seo J, Unno T, Ahn JH, Yan T, Sadowsky MJ et al. (2010) Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1. Arch Microbiol 192, 201–209.

    Article  CAS  Google Scholar 

  • Santos AS, Pereira NP, da S, II, Sarquis MI, and Antunes OA (2003) Microbiologic oxidation of isosafrole into piperonal. Appl Biochem Biotechnol 105–108, 649–657.

    Article  Google Scholar 

  • Serra S, Fuganti C, and Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23, 193–198.

    Article  CAS  Google Scholar 

  • Seshadri R, Lamm AS, Khare A, and Rosazza JPN (2008) Oxidation of isoeugenol by Nocardia iowensis. Enzyme Microb Tech 43, 486–494.

    Article  CAS  Google Scholar 

  • Shimoni E, Baasov T, Ravid U, and Shoham Y (2003) Biotransformations of propenylbenzenes by an Arthrobacter sp. and its t-anethole blocked mutants. J Biotechnol 105, 61–70.

    Article  CAS  Google Scholar 

  • Shimoni E, Baasov T, Ravid U, and Shoham Y (2002) The trans-anethole degradation pathway in an Arthrobacter sp. J Biol Chem 277, 11866–11872.

    Article  CAS  Google Scholar 

  • Surburg H, Panten J, and Bauer K (2006) In Common Fragrance and Flavor Materials: Preparation, Properties and Uses. (5th ed.), Vol. xii, p. 318, Wiley-VCH, Weinheim, Germany.

    Book  Google Scholar 

  • Tropel D and van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68, 474–500.

    Article  CAS  Google Scholar 

  • Unno T, Kim SJ, Kanaly RA, Ahn JH, Kang SI, and Hur HG (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J Agric Food Chem 55, 8556–8561.

    Article  CAS  Google Scholar 

  • Wangrangsimagul N, Klinsakul K, Vangnai AS, Wongkongkatep J, Inprakhon P, Honda K et al. (2012) Bioproduction of vanillin using an organic solvent-tolerant Brevibacillus agri 13. Appl Microbiol Biotechnol 93, 555–563.

    Article  CAS  Google Scholar 

  • Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21, 713–724.

    Article  CAS  Google Scholar 

  • Yamada M, Okada Y, Yoshida T, and Nagasawa T (2007) Purification, characterization and gene cloning of isoeugenol-degrading enzyme from Pseudomonas putida IE27. Arch Microbiol 187, 511–517.

    Article  CAS  Google Scholar 

  • Yamada M, Okada Y, Yoshida T, and Nagasawa T (2008) Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett 30, 665–670.

    Article  CAS  Google Scholar 

  • Zhang Y, Xu P, Han S, Yan H, and Ma C (2006) Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl Microbiol Biotechnol 73, 771–779.

    Article  CAS  Google Scholar 

  • Zhao LQ, Sun ZH, Zheng P, and Zhu LL (2005) Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol Lett 27, 1505–1509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hor-Gil Hur.

Additional information

D. Han and J.-Y. Ryu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Ryu, JY., Lee, H. et al. Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance compounds. J Korean Soc Appl Biol Chem 56, 125–133 (2013). https://doi.org/10.1007/s13765-013-3025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-013-3025-9

Keywords