Skip to main content
  • Original Article
  • Published:

Free radical-scavenging activities and cytoprotective effect of polyphenol-rich ethyl acetate fraction of guava (Psidium cattleianum) leaves on H2O2-treated HepG2 Cell

Abstract

Total phenolic contents of different fractions of the Psidium cattleianum leaf extract and their antioxidant capacity against several free radicals were examined. Protective effect of the ethyl acetate fraction (EAF) on H2O2-induced DNA damage in HepG2 cells were also evaluated, and the phytochemical profile of EAF was analyzed using tandem mass spectrometry. EAF derived from the 80% methanol extract of the leaf contained a remarkable amount of polyphenol and showed high levels of DPPH and alkyl radical scavenging activity, promoted cell viability, and protected against H2O2-induced DNA damage in HepG2 cells. Phytochemical analysis revealed that the major components in the EAF included quercetin monoglycoside, phloridizin, quercetin 3-diglycoside, quercetin-3-glucuronide, 2,6-dihydroxy-3,5-dimethyl-4-glucopyranosylbenzophenone, phenolic acid, guaijaverin, and naringin. The present study suggests possible synergistic or competitive antioxidant action of the major compounds of cattley guava leaf on H2O2-induced DNA damage in HepG2 cells. These results indicate that the ethyl acetate fraction of the guava leaf could be used as a potential source of natural antioxidants, and these findings will facilitate the utilization of guava leaf as a source of functional food.

References

  • Adebajo MO and Gesser HD (2001) ESR study of alkyl radicals adsorbed on porous Vycor glass: I. Build up of mehyl and ethyl radicals. Appl Surf Sci 171, 120–124.

    Article  CAS  Google Scholar 

  • Alia M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, and Goya L (2006) Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol 212, 110–118.

    Article  CAS  Google Scholar 

  • Cheung LM, Cheung PC, and Ooi VE (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81, 249–255.

    Article  CAS  Google Scholar 

  • Cui K, Luo XL, Xu KY, and Murthy MRV (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-psychopharmacol Biol Psychiatry 28, 771–799.

    Article  CAS  Google Scholar 

  • Furlan CM, Santos DYAC, Motta LB, Domingos M, and Salatino A (2010) Guava flavonoids and the effects of industrial air pollutants. Atmos Pollut Res 1, 30–35.

    Article  CAS  Google Scholar 

  • Gutierrez RMP, Mitchell S, and Solis RV (2008) Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117, 1–27.

    Article  CAS  Google Scholar 

  • Halliwell B and Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. Br J Pharmacol 142, 231–255.

    Article  CAS  Google Scholar 

  • Hansen MB, Nielsen SE, and Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119, 203–210.

    Article  CAS  Google Scholar 

  • Hidetoshi A and Danno GI (2002) Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural Elucidation. Biosci Biotechnol Biochem 66, 1727–1730.

    Article  Google Scholar 

  • Hiramoto K, Johkoh H, Sako K, and Kikugawa K (1993) DNA breaking activity of the carbon-centered radical generated from 2,2′-azobis (2-amidinopropane) hydrochloride (AAPH). Free Radic Res Commun 19, 323–332.

    Article  CAS  Google Scholar 

  • Kim H, Moon JY, Kim HJ, Lee DS, Cho M, Choi HK et al. (2010) Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 121, 429–436.

    Article  CAS  Google Scholar 

  • Kinjo J, Hirakawa T, Tsuchihashi R, Nagao T, Okawa M, Nohara T et al. (2003) Hepatoprotective constituents in plants. 14. Effects of soyasapogenol B, sophoradiol, and their glucuronides on the cytotoxicity of tert-butyl hydroperoxide to HepG2 cells. Biol Pharm Bull 26, 1357–1360.

    Article  CAS  Google Scholar 

  • Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C et al. (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198, 315–328.

    Article  CAS  Google Scholar 

  • Knasmuller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhi M et al. (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 402, 185–202.

    Article  CAS  Google Scholar 

  • Kroyer G (1986) The anti-oxidant activity of citrus fruit peels. Z Ernahrungswiss 25, 63–69.

    Article  CAS  Google Scholar 

  • Lee HU, Bae EA, Han MJ, and Kim DH (2005a) Hepatoprotective effect of 20(S)-ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tertbutyl hydroperoxide-induced liver injury. Biol Pharm Bull 28, 1992–1994.

    Article  CAS  Google Scholar 

  • Lee HU, Bae EA, Han MJ, Kim NJ, and Kim DH (2005b) Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxideinduced liver injury. Liver Int 25, 1069–1073.

    Article  CAS  Google Scholar 

  • Liu F and Ng TB (2000) Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci 66, 725–735.

    Article  CAS  Google Scholar 

  • Medina AL, Haas LIP, Chaves FC, Salvador M, Zambiazi RC, Silva WP et al. (2011) Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chem 128, 916–922.

    Article  CAS  Google Scholar 

  • Mersch-Sundermann V, Knasmuller S, Wu XJ, Darroudi F, and Kassie F (2004) Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 198, 329–340.

    Article  CAS  Google Scholar 

  • Moon JH, Tsushida T, Nakahara K, and Terao J (2001) Identification of quercetin3-O-(-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic Biol Med 30, 1274–1285.

    Article  CAS  Google Scholar 

  • Moon JY, Mosaddik A, Kim H, Cho M, Choi HK, Kim YS et al. (2011) The chloroform fraction of guava (Psidium cattleianum sabine) leaf extract inhibits human gastric cancer cell proliferation via induction of apoptosis. Food Chem 125, 369–375.

    Article  CAS  Google Scholar 

  • Musonda CA and Chipman JK (1998) Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-κB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 19, 1583–1589.

    Article  CAS  Google Scholar 

  • Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, and Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21, 895–902.

    Article  CAS  Google Scholar 

  • Oakely RD, Abbott D, Li Q, and Engelhardt JF (2009) Signalling components of redox active endosmes: The redoxosomes. Antioxid Redox Signall 11, 1313–1333.

    Article  Google Scholar 

  • Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H et al. (2005) Antidiabetic effects of extracts from Psidium guajava. J Ethnopharmacol 96, 411–415.

    Article  Google Scholar 

  • Ojewole JA (2005) Hypoglycemic and hypotensive effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract. Methods Find Exp Clin Pharmacol 27, 689–695.

    Article  CAS  Google Scholar 

  • Ramos AA, Azqueta A, Pereira-Wilson C, and Collins R (2010) Polyphenolic Compounds from Salvia Species Protect Cellular DNA from Oxidation and Stimulate DNA Repair in Cultured Human Cells. J Agric Food Chem 58, 7465–7471.

    Article  CAS  Google Scholar 

  • Ramos AA, Lima CF, Pereira ML, Fernandes-Ferreira M, and Pereira-Wilson C (2008) Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells. Toxicol Lett 177, 66–73.

    Article  CAS  Google Scholar 

  • Rangkadilok N, Worasuttayangkurn L, Bennett RN, and Satayavivad J (2005) Identification and Quantification of Polyphenolic Compounds in Longan (Euphoria longana Lam.) Fruit. J Agric Food Chem 53, 1387–1392.

    Article  CAS  Google Scholar 

  • Rosen GM and Rauckman EJ (1984) Spin trapping of superoxide and hydroxyl radicals. Methods Enzymol 105, 198–209.

    CAS  Google Scholar 

  • Roy CK, Kamath JV, and Asad M (2006) Hepatoprotective activity of Psidium guajava Linn. leaf extract. Indian J Exp Biol 44, 305–311.

    Google Scholar 

  • Saito K, Kohno M, Yoshizaki F, and Niwano Y (2008) Antioxidant properties of herbal extracts selected from screening for potent scavenging activity against superoxide anions. J Sci Food Agric 88, 2707–2712.

    Article  CAS  Google Scholar 

  • Shu J, Chou G, and Wang Z (2010) Two new benzophenone glycosides from the fruit of Psidium guajava L. Fitoterapia 81, 532–535.

    Article  CAS  Google Scholar 

  • Tan X, Zhao C, Pan J, Shi Y, Liu G, Zhou B et al. (2009) In vivo nonenzymatic repair of DNA oxidative damage by polyphenols. Cell Biol Int 33, 690–696.

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobatashi H et al. (2000) Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35, 206–221.

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, and Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44–84.

    Article  CAS  Google Scholar 

  • Wang B, Liu HC, and Ju CY (2005) Study on the hypoglycemic activity of different extracts of wild Psidium guajava leaves in Panzhihua area. Sichuan Da Xue Xue Bao Yi Xue Ban 36, 858–861.

    Google Scholar 

  • Wootton-Beard PC and Ryan L (2011) Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Res Int 44, 3135–3148.

    Article  Google Scholar 

  • Yoshizumi M, Tsuchiya K, Suzaki Y, Kirima K, Kyaw M, Moon JH et al. (2002) Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem Biophys Rea Commun 293, 1458–1465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somi Kim Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, J.Y., Lee, S., Jeong, S. et al. Free radical-scavenging activities and cytoprotective effect of polyphenol-rich ethyl acetate fraction of guava (Psidium cattleianum) leaves on H2O2-treated HepG2 Cell. J Korean Soc Appl Biol Chem 56, 687–694 (2013). https://doi.org/10.1007/s13765-013-3156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-013-3156-z

Keywords