- Original Article
- Published:
Silydianin in chloroform soluble fraction of Cirsium japonicum leaf inhibited adipocyte differentiation by regulating adipogenic transcription factors and enzymes
Journal of the Korean Society for Applied Biological Chemistry volume 56, pages 709–713 (2013)
Abstract
Cirsium japonicum, Compositae, a wild perennial herb found in Korea, Japan and China, has been used in traditional medicines. Effects of various solvent extracts of C. japonicum leaf on adipocyte differentiation in 3T3-L1cells were determined, and its mechanism was elucidated. 3T3-L1 cells were incubated with adipogenic hormone mixture mixed with various solvent fractions (hexane, chloroform, ethyl acetate, butanol, and water) of C. japonicum leaf. Adipogenesis was evaluated by triglyceride accumulation and expression of adipogenic genes by reversetranscription-polymerase chain reaction. All solvent fractions of C. japonicum leaf inhibited adipogenesis in adipocytes by decreasing triglycerol concentration in a dose-dependent manner. Among solvent fractions of C. japonicum, the chloroform-soluble fraction was found to have the highest inhibitory effect on adipocyte differentiation. Silydianin was identified as a major bioactive component in chloroform-soluble fraction of C. japonicum. The extract suppressed the expression of genes such as PPARγ, C/EBPα, adiponectin, lipoprotein lipase, and fatty acid synthetase involved in adipogenesis, indicating that chloroform-soluble fraction of C. japonicum inhibited lipid accumulation in adipocyte by suppression genes involving adipogenesis. Thus, C. japonicum leaf extract containing silydianin could be a good natural candidate for the management of obesity.
References
Andersen C, Rayalam S, Della-Fera MA, and Baile CA (2010) Phytochemicals and adipogenesis. Biofactors 36, 415–422.
Bradford MA (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.
Bulló M, García-Lorda P, Peinado-Onsurbe J, Hernández M, Del Castillo D, Argilés JM et al. (2002) TNFα expression of subcutaneous adipose tissue in obese and morbid obese females: relationship to adipocyte LPL activity and leptin synthesis. Int J Obes 26, 652–658.
Caro JF, Dohm LG, Pories WJ, and Sinha MS (1989) Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type 2 diabetes. Diab Metab Rev 5, 665–689.
Choi BH, Ahn IS, Kim YH, Park JW, Lee SY, Hyun CK et al. (2006) Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med 38, 599–605.
Cornelius P, MacDougald OA, and Lane MD (1994) Regulation of adipocyte development. Annu Rev Nutr 14, 99–129.
Gregorie M, Smas CM, and Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78, 783–809.
Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ et al. (2007) Antiobesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 364, 1002–1008.
Kim JE and Chen J (2004) Regulation of peroxisome proliferation-activated receptor gammar activity by mammalian target of rapamycin and amino acid in adipogenesis. Diabetes 53, 2748–2756.
Liao Z, Wu Z and Wu M (2012) Cirsium japonicum flavones enhance adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biol Pharm Bull 35, 855–860.
Lui S, Luo X, Li D, Zhang J, Qui D, Lui W et al. (2006) Tumor inhibition and improve immunity in mice treated with flavone from Cirsium japonicum DC. Int Immuno pharmacol 6, 1387–1393.
Mackall JC, Student AK, Polakis SE, and Lane MD (1976) Induction of lipogenesis during differentiation in a “preadipocyte” cell line. J Biol Chem 251, 6462–6464.
Moussalli C, Down RW, and May JM (1986) Potentiation by glucose of lipolytic responsiveness of human adipocytes. Diabetes 35, 759–763.
Palmer DG, Rutter GA, and Tavaré JM (2002) Insulin-stimulated fatty acid synthase gene expression does not require increased sterol response element binding protein1 transcription in primary adipocytes. Biochem Biophys Res Commun 291, 439–443.
Pi-sunyer FX (2006) The medical risks of obesity. Obes Surg 12, 6S–11S.
Rayalam S, Della-Fera MA, and Baile CA (2008) Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 19, 717–726.
Yin J, Heo SI, and Wang MH (2008) Antioxidant and anticancer activities of methanol and water extracts from leavers of Cirsium japonicum. J Appl Biol Chem 51, 160–164.
Zhi F, Kong LY, and Peng SX (2001) Progress in chemical and pharmacological studies on Cirsium japonicum. Zhong Cao Yao 32, 664–666.
Author information
Authors and Affiliations
Corresponding author
Additional information
H.-S. Park and S.-M. Shim contributed equally.
Rights and permissions
About this article
Cite this article
Park, HS., Shim, SM. & Kim, GH. Silydianin in chloroform soluble fraction of Cirsium japonicum leaf inhibited adipocyte differentiation by regulating adipogenic transcription factors and enzymes. J Korean Soc Appl Biol Chem 56, 709–713 (2013). https://doi.org/10.1007/s13765-013-3216-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13765-013-3216-4
Keywords
- adipocyte differentiation
- adipogenic transcription
- Cirsium japonicum
- Silydianin
- 3T3-L1 cells