Skip to main content
  • Article
  • Published:

Antibacterial and cytotoxic activities of Schiff base analogues of 4-aminoantipyrine

Abstract

Schiff base is the class of compounds showing wide range of biological activities having the azomethine (-N=CH-) active pharmacophore, which play major roles in their significant bio-activities. A series of Schiff base analogues of 4-aminoantipyrine analogues have been tested for bactericidal and cytotoxic activities against selected bacterial strains and brine shrimp (Artemia salina) nauplii, respectively. Of the compounds tested, two compounds showed a good inhibition of bacterial growth against E. coli and C. sakazakii, whereas three compounds demonstrated high cytotoxicity with LC50 values of 225, 480, and 581 ppm, in a short term bioassay using A. salina. Qualitative structure-cytotoxic activity relationships were studied using physicochemical parameters; a good correlation between clogP and cytotoxic activity was observed.

References

  • Abd Rehim SS, Ibrahim MAM, and Khalid KF. (2001) The inhibition of 4-(2- amino-5-methylphenylazo)antipyrine on corrosion of mild steel in HCl solution. Mater Chem Phys 70, 268–73.

    Article  Google Scholar 

  • Adams JP. (2000) Nitro and related compounds. J Chem Soc Perkin Trans 1, 3695–705.

    Article  Google Scholar 

  • Agarwal RK and Prasad S. (2005) Synthesis, spectroscopic and physicochemical characterization and biological activity of Co(II) and Ni(II) coordination compounds with 4-aminoantipyrine thiosemicarbazone. Bioinorg Chem Appli 3, 271–88.

    Article  CAS  Google Scholar 

  • Alam MS and Lee DU. (2011) Cytotoxic and antimicrobial properties of furoflavones and furochalcones. J Korean Soc Appl Biol Chem 54, 725–30.

    Article  CAS  Google Scholar 

  • Alam MS and Lee DU. (2012) Synthesis, molecular structure and antioxidant activity of (E)-4-[benzylideneamino]-1,5-dimethyl-2-phenyl-1H-pyrazol- 3(2H)-one, a Schiff base ligand of 4-aminoantipyrine. J Chem Crystallogr 42, 93–102.

    Article  CAS  Google Scholar 

  • Alam MS, Choi JH, and Lee DU. (2012) Synthesis of novel Schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorg Med Chem 20, 4103–8.

    Article  CAS  Google Scholar 

  • Alam MS, Nam YJ, and Lee DU. (2013) Synthesis and evaluation of (Z)-2,3- diphenylacrylo- nitrile analogs as anti-cancer and anti-microbial agents. Eur J Med Chem 69, 790–7.

    Article  CAS  Google Scholar 

  • Ali MA, Mirza AH, Butcher RJ, Tarafder MTH, Keat TB, and Ali AM. (2002) Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. J Inorg Biochem 92, 141–8.

    Article  Google Scholar 

  • Ali P, Meshra J, Sheikh J, Tiwar V, Rajendra Dongre R, and Ben Hadda T. (2012) Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med Chem Res 21, 157–64.

    Article  CAS  Google Scholar 

  • Bashkatova NV, Korotkova EI, Karbainov YA, Yagovkin AY, and Bakibaev AA. (2005) Electrochemical, quantum-chemical and antioxidant properties of antipyrine and its derivatives. J Pharm Biomed Anal 37, 1143–7.

    Article  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, and Turck M. (1966) Antibiotic susceptibility testing by a standardized single disk method. Amer J Clin Pathol 45, 493–6.

    CAS  Google Scholar 

  • Bey P and Vevert JP. (1977) Synthesis of α-alkyl and α-functionalized methyl-α-amino acids. Tetrahedron Lett 18, 1455–8.

    Article  Google Scholar 

  • Bruker SMART (Version 5.625) for Windows NT. (2000) Bruker AXS Inc., USA.

  • Burdulene D, Palaima A, Stumbryavichyute Z, and Talaikite Z. (1999) Synthesis and antiinflammatory activity of 4-aminoantipyrine derivatives of succinamides. Pharm Chem J[Khim-Farm Zh] 33, 20–2.

    Google Scholar 

  • Costa D, Marques AP, Reis RL, Lima JLFC, and Fernandes E. (2006) Inhibition of human neutrophil oxidative burst by pyrazolone derivatives. Free Radical Biol Med 40, 632–40.

    Article  CAS  Google Scholar 

  • Cukurovali A, Yilmaz I, Ozmen H, and Ahmedzade M. (2002) Cobalt(II), copper(II), nickel(II) and zinc(II) complexes of two novel Schiff base ligands and their antimicrobial activity. Transition Met Chem 27, 171–6.

    Article  CAS  Google Scholar 

  • Ei Ashry ESH, Awad LF, Ibrahim EI, and Bdeewy OK. (2007) Synthesis of antipyrine derivatives derived from dimedone. Chinese J Chem 25, 570–3.

    Article  Google Scholar 

  • Ertl P, Rohde B, and Selzer P. (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43, 3714–7.

    Article  CAS  Google Scholar 

  • Finney DJ. (1978) In Statistical Method in Biological Assay, (3rd ed.), Charles Griffin and Company, England.

    Google Scholar 

  • Hartl M and Humpf HU. (2000) Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol 38, 1097–102.

    Article  CAS  Google Scholar 

  • Higuchi M and Yamamoto K. (1999) Selective synthesis of cyclic phenylazomethines. Org Lett 1, 1881–3.

    Article  CAS  Google Scholar 

  • Hu TP. (2006) (E)-4-[4-(4-Chlorobenzyloxy)benzylideneamino]-1,5-dimethyl- 2-phenyl-1H-pyrazol-3(2H)-one. Acta Cryst E62, o2270–1.

    Google Scholar 

  • Ismail KZ. (2000) Synthesis, spectroscopic, magnetic and biological activity studies of copper(II) complexes of an antipyrine schiff base. Transition Met Chem 25, 522–8.

    Article  CAS  Google Scholar 

  • Jarrahpour A, Motamedifar M, Pakshir K, Hadi N, and Zarei M. (2004) Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules 9, 815–24.

    Article  CAS  Google Scholar 

  • Kees KL, Fitzgerald JJ, Steiner KE, Mattes JF, Mihan B, Tosi T, Mondoro D, and McCalebr ML. (1996) New potent antihyperglycemic agents in db/db mice: synthesis and structure-activity relationship studies of (4- substituted benzyl) (trifluoromethyl)pyrazoles and-pyrazolones. J Med Chem 39, 3920–8.

    Article  CAS  Google Scholar 

  • Layer RW. (1963) The chemistry of imines. Chem Rev 63, 489–510.

    Article  CAS  Google Scholar 

  • Li ZX and Zhang XL. (2006) 1,5-Dimethy-4-[(3-nitro-benzylidene)amino]-2- pheyl-1,2-dihydro-pyrazol-3-one. Chinese J Struct Chem 25, 29–32.

    Google Scholar 

  • Liu SX, Han JR, Zhen XL, and Tian X. (2006) (E)-4-[4-(2,4-Dichlorobenzyloxy) benzylideneamino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one. Acta Cryst E62, o5765–6.

    Google Scholar 

  • Macho V, Kralik M, and Hudec J. (2004) One stage preparation of Schiff’s bases from nitroarenes, aldehydes and carbon monoxide at presence of water. J Mol Catal A Chem 209, 69–73.

    Article  CAS  Google Scholar 

  • Mayer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, and McLaughlin JL. (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45, 31–4.

    Article  Google Scholar 

  • Montalvo-González R and Arizα-Castolo A. (2003) Molecular structure of diaryl-aldimines by multinuclear magneticresonance and X-ray diffraction. J Mol Structure 655, 375–89.

    Article  Google Scholar 

  • Santos MLP, Bagatin IA, Pereira EM, and Ferreira AMDC. (2001) Redox behaviour and reactivity of some di-Schiff base copper(II) complexes towards reduced oxygen species. J Chem Soc Dalton Trans, 838–44.

    Google Scholar 

  • Santos PMP, Antunes AMM, Noronha J, Fernandes E, and Vieira AJSC. (2010) Scavenging activity of aminoantipyrines against hydroxyl radical. Eur J Med Chem 45, 2258–64.

    Article  CAS  Google Scholar 

  • Sheldrick GM. (2008) A short history of SHELX. Acta Cryst A64, 112–22.

    Article  Google Scholar 

  • Stewart JJP. (2004) Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J Mol Model 10, 155–64.

    Article  CAS  Google Scholar 

  • Testa B, Carrupt PA, Gaillard P, and Billois F. (1996) Lipophilicity in molecular modeling. Pharm Res 13, 335–43.

    Article  CAS  Google Scholar 

  • Türkeer L, Sener E, Yalçín I, Akbulut U, and Kayalidere I. (1990) QSAR of some antifungally active benzoxazoles employing quantum chemical parameters. Sci Pharm 58, 107–13.

    Google Scholar 

  • Weidenbörner M and Chandra Jha H. (1993) Antifungal activity of flavonoids and their mixtures against different fungi occurring on grain. Pestic Sci 38, 347–51.

    Article  Google Scholar 

  • Yadav PN, Demertzis MA, Kovalα-Demertzi D, Skoulika S, and West DX. (2003) Palladium(II) complexes of 4-formylantipyrine N(3)-substituted thiosemicarbazones: first example of X-ray crystal structure and description of bonding properties. Inorg Chim Acta 349, 30–6.

    Article  CAS  Google Scholar 

  • Zhang QZ, Zhao YL, Chen X, and Yu M. (2006) (E)-4-[2-(4-Chlorobenzyloxy) benzylideneamino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one. Acta Cryst E62, o5252–4.

    Google Scholar 

  • Zhao WN. (2007) A dinuclear manganese (II) complex with a 4-aminoantipyrine-derived Schiff base ligand. Acta Cryt E63, m2095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.S., Lee, DU. & Bari, M.L. Antibacterial and cytotoxic activities of Schiff base analogues of 4-aminoantipyrine. J Korean Soc Appl Biol Chem 57, 613–619 (2014). https://doi.org/10.1007/s13765-014-4201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-014-4201-2

Keywords