- Food Science/Microbiology
- Published:
Production of Reactive Oxygen Species and Changes in Antioxidant Enzyme Activities during Differentiation of 3T3-L1 Adipocyte
Journal of the Korean Society for Applied Biological Chemistry volume 52, pages 70–75 (2009)
Abstract
Obesity, a major public health problem around the world, is a strong risk factor for the development of type 2 diabetes, atherosclerosis, hypertension and cardiovascular diseases. Recent research suggests that increased production of reactive oxygen species (ROS) from accumulated fat in obesity leads to elevated systemic oxidative stress and contributes to the development of obesity-linked chronic disorders. The aim of the current study was to investigate changes of key enzymes associated with antioxidant response and metabolic pathways in 3T3-L1 cell, a preadipocyte cell line that undergoes differentiation into mature adipocytes. The changes in lipid accumulation, ROS production, glucose-6-phosphate dehydrogenase (G6PDH), superoxide dismutase (SOD) and catalase (CAT) during the course of differentiation were determined. The ROS production and G6PDH activity exponentially increased as differentiation progressed. However, CAT activity showed a sharp decrease until day 2, followed by a gradual increase up to day 6 and then leveled off. Given the importance of adipocyte differentiation and ROS production in oxidation-linked diseases, these data provide a biochemical rationale for further studies to identify cellular mechanisms that can counter ROS generation and modulate cellular redox environment in adipocytes.
Abbreviations
- AER:
-
antioxidant enzyme responses
- BCS:
-
bovine calf serum
- CAT:
-
catalase
- DETAPAC:
-
diethylene triaminie penta-acetic acid
- DEX:
-
dexamethasone
- DMEM:
-
dulbecco’s modified Eagle’s medium; ETS, electron transport system
- FBS:
-
fetal bovine serum
- G6PDH:
-
glucose-6-phosphate dehydrogenase
- ROS:
-
reactive oxygen species
- HMP:
-
hexose monophosphate
- IBMX:
-
3-isobutyl-1-methylxanthine
- NBT:
-
nitroblue tetrazolium
- NO:
-
nitric oxide
- NOX:
-
NADPH oxidase
- OD:
-
optical density
- PBS:
-
phosphate buffered saline
- P/S:
-
penicillin-streptomycin
- SOD:
-
superoxide dismutase
References
Araki S, Dobashi K, Kubo K, Yamamoto Y, Asayama K, and Shirahata A (2006) N-acetylsysteine attenuates TNF-? induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes. Life Sci 79, 2405–2412.
Beers R and Sizer IA (1952) Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195, 133–140.
Blumberg J M, Tzameli I, Astapova I, Lam FS, Flier JS, and Hollenberg AN (2006) Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem 28, 11205–11213.
Bradford MA (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.
Deutsch J (1983) Glucose-6-phosphate dehydrogenase. In Methods of enzymatic analysis (3rd ed), pp. 191–197. Verlag Chemie Berlin publishing, Germany.
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, and Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114, 1752–1761.
Hsu CL and Yen GC (2008) Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res 52, 53–61.
Oberley LW and Spitz DR (1984) Assay of SOD activity in tumor tissue. Methods Enzymol 105, 457–464.
Park J, Choe SS, Choi AH, Kim KH, Yoon MJ, Suganami T, Ogawa Y, and Kim JB (2006) Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes 55, 2939–2949.
Park J, Rho HK, Kim KH, Choe SS, Lee YS, and Kim JB (2005) Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol Cell Biol 25, 5146–5157.
Rayalam S, Della-Fera MA, and Baile CA (2008) Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 19, 717–726.
Spiegelman BM and Flier JS (1999) Adipogenesis and obesity: rounding out the big picture. Cell 87, 377–389.
Student AK, Hsu RY, and Lane MD (1980) Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem 225, 4745–4750.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, OH., Kwon, YI., Hong, HD. et al. Production of Reactive Oxygen Species and Changes in Antioxidant Enzyme Activities during Differentiation of 3T3-L1 Adipocyte. J. Korean Soc. Appl. Biol. Chem. 52, 70–75 (2009). https://doi.org/10.3839/jksabc.2009.012
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.3839/jksabc.2009.012
Key words
- antioxidant enzyme response
- glucose-6-phosphate dehydrogenase
- hexose monophosphate shunt
- reactive oxygen species
- 3T3-L1 adipocyte differentiation