Jones DL (1995) Palms Throughout the World. Smithsonian Books. Washington DC, ISBN 10:1560986166.
Gilman EF, Watson DG (2006) Washingtonia filifera : Desert Palm 1. Agric Eng, pp 1–3.
Selim NM, El-Hawary SS, El Zalabani SM, Shamma RN, Mahdy NES, Sherif NH, Fahmy HA, Mekkawy MH, Yasri A, Sobeh M (2020) Impact of Washingtonia robusta Leaves on Gamma Irradiation-Induced Hepatotoxicity in Rats and Correlation with STING Pathway and Phenolic Composition. Pharmaceuticals (Basel) 13(10):320. https://doi.org/10.3390/ph13100320
Flynn T, Lorence DH (2002) Additions to the flora of the Hawaiian Islands. Bishop Mus Occas Pap 69:14–16
Google Scholar
Dewir YH, El-Mahrouk ME, Seliem MK, Murthy HN (2020) Bioactive compounds of California Fan Palm Washingtonia filifera (Linden ex André) H. Wendl. ex de Bary. In: Murthy HN, Bapat VA (eds) Bioactive compounds in underutilized fruits and nuts. Springer International Publishing, Cham, pp 63–74. https://doi.org/10.1007/978-3-030-30182-8_7
Chapter
Google Scholar
Era B, Floris S, Sogos V, Porcedda C, Piras A, Medda R, Fais A, Pintus F (2021) Anti-aging potential of extracts from Washingtonia filifera seeds. Plants 10:151. https://doi.org/10.3390/plants10010151
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornett JW (1987) Nutritional value of desert fan palm fruits. Principes. 31(4):159–161
Google Scholar
Hemmati AA, Kalantari H, Siahpoosh A, Ghorbanzadeh B, Jamali H (2015) Anti-inflammatory effect of hydroalcoholic extract of the Washingtonia filifera seeds in carrageenan-induced paw edema in rats. Jundishapur J Nat Pharm Prod 10(1):1–5
Article
Google Scholar
Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MSRB, Folador P, Damazio RG et al (2008) Flavonoids: prospective drug candidates. Mini Rev Med Chem 8(13):1429–1440
Article
CAS
PubMed
Google Scholar
Cazarolli LH, Folador P, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB (2009) Stimulatory effect of apigenin-6-C-beta-L-fucopyranoside on insulin secretion and glycogen synthesis. Eur J Med Chem 44(11):4668–4673
Article
CAS
PubMed
Google Scholar
Cazarolli LH, Folador P, Moresco HH, Brighente IMC, Pizzolatti MG, Silva FRMB (2009) Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-alpha-l-rhamnopyranosyl)-beta-L-fucopyranoside on 14C-glucose uptake. Chem Biol Interact 179(2–3):407–412
Article
CAS
PubMed
Google Scholar
Daulatabad CD, Ankalgi RF (1985) Component acids of palmae seed oils. Fette Seifen Anstrichm. 87:126–128. https://doi.org/10.1002/lipi.19850870310
Article
CAS
Google Scholar
Nehdi IA (2011) Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil. Food Chem 126(1):197–202
Article
CAS
Google Scholar
Dang J, Tu Y, Wang J, Yang Y (2021) Carbamylated erythropoietin alleviates kidney damage in diabetic rats by suppressing oxidative stress. Curr Med Sci. 41(3):513–521. https://doi.org/10.1007/s11596-021-2370-x
Article
CAS
PubMed
Google Scholar
Bénardeau A, Kahnert A, Schomber T, Meyer J, Pavkovic M, Kretschmer A, Lawrenz B, Hartmann E, Mathar I, Hueser J, Kraehling JR, Eitner F, Hahn MG, Stasch J-P, Sandner P (2021) Runcaciguat, a novel soluble guanylate cyclase activator, shows renoprotection in hypertensive, diabetic, and metabolic preclinical models of chronic kidney disease. Naunyn Schmiedebergs Arch Pharmacol 394(12):2363–2379. https://doi.org/10.1007/s00210-021-02149-4
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Beeh ME, Aljabri M, Orabi HF, Qari SH, Ramadan MF (2019) Ameliorative impact of cold-pressed Rosmarinus officinalis oil against liver toxicity and genotoxic effects in streptozotocin-induced diabetic rats and their offspring. J Food Biochem 43:e12905. https://doi.org/10.1111/jfbc.12905
Article
CAS
PubMed
Google Scholar
El-Hadary AE, Elsanhoty RM, Ramadan MF (2019) In vivo protective effect of Rosmarinus officinalis oil against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. PharmaNutrition 9(2019):100151. https://doi.org/10.1016/j.phanu.2019.100151
Article
Google Scholar
Ortiz-Avila O, Figueroa-García MD, García-Berumen CI, Calderón-Cortés E, Mejía-Barajas JA, Rodriguez-Orozco AR, Mejía-Zepeda R, Saavedra-Molina A, Cortés-Rojo C (2017) Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type 2 diabetic rats by improving glutathione status. J Bioenerg Biomembr 49(2):205–214. https://doi.org/10.1007/s10863-017-9697-9
Article
CAS
PubMed
Google Scholar
Betz BB, Jenks SJ, Cronshaw AD, Lamont DJ, Cairns C, Manning JR, Goddard J, Webb DJ, Mullins JJ, Hughes J, McLachlan S, Strachan MWJ, Price JF, Conway BR (2016) Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney Int 89(5):1125–1135
Article
CAS
PubMed
Google Scholar
Nobrega MA, Fleming S, Roman RJ, Shiozawa M, Schlick N, Lazar J, Jacob HJ. Initial characterization of a rat model of diabetic nephropathy. Diabetes. 2004. 53(3):735–42. https://pubmed.ncbi.nlm.nih.gov/14988259. Accessed 22 Oct 2021.
Danda RS, Habiba NM, Rincon-Choles H, Bhandari BK, Barnes JL, Abboud HE, Pergola PE (2005) Kidney involvement in a nongenetic rat model of type 2 diabetes. Kidney Int 68(6):2562–2571
Article
CAS
PubMed
Google Scholar
Kowalski A, Krikorian A, Lerma EV (2015) Diabetes and chronic kidney disease. Dis Mon 61(9):378–386
Article
PubMed
Google Scholar
Fioretto P, Mauer M. Diabetic nephropathy-challenges in pathologic classification. Nat Rev Nephrol. 2010. 6(9):508–10. https://www.nature.com/articles/nrneph.2010.96
Navarro-González JF, Mora-Fernández C (2011) Inflammatory pathways. Contrib Nephrol 170:113–123. https://doi.org/10.1159/000325646
Article
PubMed
Google Scholar
Weng L, Chen T-H, Zheng Q, Weng W-H, Huang L, Lai D, Fu Y-S, Weng CF (2021) Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice. Biomed Pharmacother 141:111865. https://doi.org/10.1016/j.biopha.2021.111865
Article
CAS
PubMed
Google Scholar
Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25(10):1939–1948
Article
CAS
PubMed
Google Scholar
Wakino S, Hasegawa K, Itoh H (2015) Sirtuin and metabolic kidney disease. Kidney Int 88(4):691–698
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9(5):407–416
Article
PubMed
CAS
Google Scholar
Sharma K (2014) Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int Suppl 4(1):113–117
Article
CAS
Google Scholar
Oomah BD, Ladet S, Godfrey DV, Liang J, Girard B (2000) Characteristics of raspberry (Rubus idaeus L) seed oil. Food Chem 69(2):187–193
Article
CAS
Google Scholar
Xia X, Xu J, Wang X, Wang H, Lin Z, Shao K, Fang L, Zhang C, Zhao Y. Jiaogulan tea (Gpostemma pentaphyllum) potentiates the antidiabetic effect of white tea via the AMPK and PI3K pathways in C57BL/6 mice. Food Funct. 2020. 26;11(5):4339–55. https://pubs.rsc.org/en/content/articlehtml/2020/fo/d0fo00395f.
Poucher SM, Cheetham S, Francis J, Zinker B, Kirby M, Vickers SP (2012) Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic β-cell mass in a streptozotocin-induced mouse model of type 2 diabetes. Diabetes Obes Metab 14(10):918–926. https://doi.org/10.1111/j.1463-1326.2012.01619.x
Article
CAS
PubMed
Google Scholar
da Costa Guerra JF, Maciel PS, de Abreu IC, Pereira RR, Silva M, de Morais CL, Pinheiro-Sant’Ana HM, de Lima WG, Silva ME, Pedrosa ML (2015) Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods 1(14):192–202
Article
CAS
Google Scholar
Lillie RD, Pizzolato P, Donaldson PT (1976) Nuclear stains with soluble metachrome metal mordant dye lakes. Histochemistry 49:23–35
Article
CAS
PubMed
Google Scholar
Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29
Article
CAS
PubMed
Google Scholar
Besbes S, Blecker C, Deroanne C, Drira NE, Attia H (2004) Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem 84(4):577–584
Article
CAS
Google Scholar
Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L.: composition and population profiling. Phytochemistry 66(14):1729–1735
Article
CAS
PubMed
Google Scholar
Bruckert E (2001) Fonctionnalite des lipides dans le contexte d’une relation alimentation-sante les phytostérols, place dans la prise en charge du patient hyperlipidémique. Oléagineux, Corps Gras, Lipides 8(4):312–316. https://doi.org/10.1051/ocl.2001.0312
Article
CAS
Google Scholar
Jayadas NH, Nair KP (2006) Coconut oil as base oil for industrial lubricants-evaluation and modification of thermal, oxidative and low temperature properties. Tribol Int 39(9):873–878
Article
CAS
Google Scholar
Liang T, Liao S (1992) Inhibition of steroid 5α-reductase by specific aliphatic unsaturated fatty acids. Biochem J 285(2):557–562
Article
CAS
PubMed
PubMed Central
Google Scholar
Niederprüm HJ, Schweikert HU, Zänker KS (1994) Testosterone 5α-reductase inhibition by free fatty acids from Sabal serrulata fruits. Phytomedicine 1(2):127–133
Article
PubMed
Google Scholar
Raynaud JP, Cousse H, Martin PM (2002) Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon. J Steroid Biochem Mol Biol 82(2–3):233–239
Article
CAS
PubMed
Google Scholar
VeereshBabu SV, Veeresh B, Patil AA, Warke YB (2010) Lauric acid and myristic acid prevent testosterone induced prostatic hyperplasia in rats. Eur J Pharmacol 626(2–3):262–265
Article
CAS
Google Scholar
Al-Saqer JM, Sidhu JS, Al-Hooti SN, Al-Amiri HA, Al-Othman A, Al-Haji L, Ahmed N, Mansour IB, Minal J (2004) Developing functional foods using red palm olein. IV. Tocopherols and tocotrienols. Food Chem 85(4):579–583. https://doi.org/10.1016/j.foodchem.2003.08.003
Article
CAS
Google Scholar
Adhikari P, Hwang KT, Shin MK, Lee BK, Kim SK, Kim SY, Lee KT, Kim SZ (2008) Tocols in caneberry seed oils. Food Chem 111(3):687–690. https://doi.org/10.1016/J.FOODCHEM.2008.04.038
Article
CAS
Google Scholar
Wang Q, Zhou J, Xiang Z, Tong Q, Pan J, Wan L, Chen J (2019) Anti-diabetic and renoprotective effects of Cassiae Semen extract in the streptozotocin-induced diabetic rats. J Ethnopharmacol 239:111904. https://doi.org/10.1016/J.JEP.2019.111904
Article
PubMed
Google Scholar
Hammami S, Salem S Ben, Jarraya H, Devi PUM, Nefzi A, Mighri Z. Chemical composition and antioxidant properties of washingtonia filifera leaves and flowers. 2012.
Khan H, Jawad M, Kamal MA, Baldi A, Xiao J, Nabavi SM, Daglia M (2018) Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food Chem Toxicol 1(119):355–367
Article
CAS
Google Scholar
Mi Y, Zhao X, Liu F, Sun C, Sun Z, Liu L (2021) Changes in soil quality, bacterial community and anti-pepper phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. Eur J Soil Biol 1:105
Google Scholar
Xiao J (2018) Stability of dietary polyphenols: it’s never too late to mend? Food Chem Toxicol 1(119):3–5
Article
CAS
Google Scholar
Gao D, Zhao M, Qi X, Liu Y, Li N, Liu Z, Bian Y (2016) Hypoglycemic effect of Gynostemma pentaphyllum saponins by enhancing the Nrf2 signaling pathway in STZ-inducing diabetic rats. Arch Pharm Res 39:221–230
Article
CAS
PubMed
Google Scholar
Harborne JB (1975) Flavonoid sulphates: a new class of sulphur compounds in higher plants. Phytochemistry 14(5–6):1147–1155
Article
CAS
Google Scholar
Lercker G, Rodriguez-Estrada MT (2000) Chromatographic analysis of unsaponifiable compounds of olive oils and fat-containing foods. J Chromatogr A 881(1–2):105–129. https://doi.org/10.1016/s0021-9673(00)00455-6
Article
CAS
PubMed
Google Scholar
Ramadan MF, Amer MM, Awad AE (2008) Coriander (Coriandrum sativum L.) seed oil improves plasma lipid profile in rats fed a diet containing cholesterol. Eur Food Res Technol 227:1173–1182. https://doi.org/10.1007/s00217-008-0833-y
Article
CAS
Google Scholar
El-Hadary AE, Ramadan Hassanien MF (2016) Hepatoprotective effect of cold-pressed Syzygium aromaticum oil against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Pharm Biol 54(8):1364–1372. https://doi.org/10.3109/13880209.2015.1078381
Article
CAS
PubMed
Google Scholar
Issaoui M, Delgado AM (2019) Grading, labeling and standardization of edible oils. In: Ramadan MF (ed) Fruit oils chemistry and functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_2
Chapter
Google Scholar
Ramadan MF (2019) Chemistry and functionality of fruit oils: an introduction. In: Ramadan M (ed) Fruit oils: chemistry and functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_1
Chapter
Google Scholar
Delgado A, Al-Hamimi S, Ramadan MF, De Wit M, Durazzo A, Nyam KL, Issaoui M (2020) Contribution of tocols to food sensorial properties, stability, and overall quality. J Food Qual. https://doi.org/10.1155/2020/8885865
Article
Google Scholar
Durazzo A, Nazhand A, Lucarini M, Delgado AM, De Wit M, Nyam KL, Santini A, Ramadan MF (2021) Occurrence of tocols in foods: an updated shot of current databases. J Food Qual. https://doi.org/10.1155/2021/8857571
Article
Google Scholar
Holt RR, Uriu-Adams JY, Keen CL (2012) Zinc. In: Macdonald IA, Zeisel SH (eds) Present knowledge in nutrition, 10th edn. Wiley, Blackwell, pp 521–539. https://doi.org/10.1002/9781119946045.ch34
Chapter
Google Scholar
Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328(20):1450–1456. https://doi.org/10.1056/NEJM199305203282004
Article
CAS
PubMed
Google Scholar
Zhang B, Sun W, Yu N, Sun J, Yu X, Li X, Xing Y, Yan D, Ding Q, Xiu Z (2018) Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats. J Funct Foods. 46:256–267
Article
CAS
Google Scholar
Li M, Zhou F, Xu T, Song H, Lu B (2018) Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food Chem Toxicol 119:6–13
Article
CAS
PubMed
Google Scholar
Li X, Jiang X, Sun J, Zhu C, Bai W (2018) Recent advances of medical foods in China: the opportunities and challenges under standardization. Food Chem Toxicol 119:342–354
Article
PubMed
CAS
Google Scholar
Izquierdo-Lahuerta A, Martínez-García C, Medina-Gómez G (2016) Lipotoxicity as a trigger factor of renal disease. J Nephrol 29(5):603–610
Article
CAS
PubMed
Google Scholar
Wicks SE, Nguyen TT, Breaux C, Kruger C, Stadler K (2016) Diet-induced obesity and kidney disease- In search of a susceptible mouse model. Biochimie 1(124):65–73
Article
CAS
Google Scholar
Migliorini A, Angelotti ML, Mulay SR, Kulkarni OO, Demleitner J, Dietrich A, Sagrinati C, Ballerini L, Peired A, Shankland SJ, Liapis H, Romagnani P, Anders HJ (2013) The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am J Pathol 183(2):431–440
Article
CAS
PubMed
Google Scholar
Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol Mech Dis 6:395–423. https://doi.org/10.1146/annurev.pathol4110807092150
Article
CAS
Google Scholar
Yadav A, Jahan A, Yadav TP, Sachdev N, Chitkara A, Asare R (2013) Effect of glucocorticoids on serum lipid profile and endothelial function and arterial wall mechanics. Indian J Pediatr 80(12):1007–1014. https://doi.org/10.1007/s12098-013-1035-6
Article
PubMed
Google Scholar
Oraby MA, El-Yamany MF, Safar MM, Assaf N, Ghoneim HA (2019) Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats. Biomed Pharmacother 1(109):910–920
Article
CAS
Google Scholar
Bhattacharjee N, Borah A (2016) Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem Int 1(101):48–55
Article
CAS
Google Scholar
Huang K, Chen C, Hao J, Huang J, Wang S, Liu P, Huang H (2015) Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol Cell Endocrinol 5(399):178–189
Article
CAS
Google Scholar
Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. https://doi.org/10.1146/ANNUREV.PHARMTOX.46.120604.141046
Article
CAS
PubMed
Google Scholar
Todorovic M, Wood SA, Mellick GD (2016) Nrf2: a modulator of Parkinson’s disease? J Neural Transm 123(6):611–619. https://doi.org/10.1007/s00702-016-1563-0
Article
CAS
PubMed
Google Scholar
Norris KM, Okie W, Kim WK, Adhikari R, Yoo S, King S, Pazdro R (2016) A high-fat diet differentially regulates glutathione phenotypes in the obesity-prone mouse strains DBA/2J, C57BL/6J, and AKR/J. Nutr Res 36(12):1316–1324
Article
CAS
PubMed
Google Scholar
Assiri AMA, El-Beeh ME, Amin AH, Ramadan MF (2017) Ameliorative impact of Morus alba leaves’ aqueous extract against embryonic ophthalmic tissue malformation in streptozotocin-induced diabetic rats. Biomed Pharmacother 1(95):1072–1081
Article
CAS
Google Scholar
Igarashi Y, Iida S, Dai J, Huo J, Cui X, Sawashita J, Mori M, Miyahara H, Higuchi K (2021) Glavonoid-rich oil supplementation reduces stearoyl-coenzyme A desaturase 1 expression and improves systemic metabolism in diabetic, obese KK-Ay mice. Biomed Pharmacother 140:111714. https://doi.org/10.1016/j.biopha.2021.111714
Article
CAS
PubMed
Google Scholar
Ghizzoni M, Haisma HJ, Maarsingh H, Dekker FJ (2011) Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation. Drug Discov Today 16(11–12):504–511
Article
CAS
PubMed
Google Scholar