Rotola-Pukkila M, Yang BR, Hopia A (2019) The effect of cooking on umami compounds in wild and cultivated mushrooms. Food Chem 278(25):56–66. https://doi.org/10.1016/j.foodchem.2018.11.044
Article
CAS
PubMed
Google Scholar
Rocha RAR, Ribeiro MN, Silva GA, Rocha LCR, Piheiro ACM, Nunes CA, Carneiro JDS (2020) Temporal profile of flavor enhancers MAG, MSG, GMP, and IMP, and their ability to enhance salty taste, in different reductions of sodium chloride. J Food Sci 85(5):1565–1575. https://doi.org/10.1111/1750-3841.15121
Article
CAS
PubMed
Google Scholar
Huang YL, Lu DQ, Liu H, Liu SY, Jiang S, Pang GC, Liu Y (2019) Preliminary research on receptor-ligand recognition mechanism of umami by hT1R1 biosensor. Food Funct 10(3):1280–1287. https://doi.org/10.1039/C8FO02522C
Article
CAS
PubMed
Google Scholar
Chen Q, Mou S, Hou X (1999) Determination of inosine 5ʹ-monophosphate and guanosine 5ʹ-monophosphate in taste-enhancers by ion chromatography. Se pu Chin J Chromatogr/Zhongguo hua xue hui 17:290–292
CAS
Google Scholar
Domínguez-álvarez J, Mateos-Vivas M, Rodríguez-Gonzalo E, García-Gómez D, Bustamante-Rangel M, Zamarreno MMD, Carabias-Martínez R (2017) Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. TrAC, Trends Anal Chem 92(3):12–31. https://doi.org/10.1016/j.trac.2017.04.005
Article
CAS
Google Scholar
Dai LZ, Guo N, Liu YQ, Shen SS, Ge QF, Pan YJ (2019) Analysis of the binding sites with NL-101 to amino acids and peptides by HPLC/MS/MS. Chin Chem Lett 30(1):103–106. https://doi.org/10.1016/j.cclet.2017.12.023
Article
CAS
Google Scholar
Xu Y, Kutsanedzie FYH, Hassan MM, Zhu JJ, Ahmad W, Li HH, Chen QS (2020) Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem 315:126–300. https://doi.org/10.1016/j.foodchem.2020.126300
Article
CAS
Google Scholar
Li WL, Yao L, Zhang ZW, Geng HC, Li CC, Yu YY, Sheng PT, Li ST (2019) Tiny Au nanoparticles mediation strategy for preparation of NIR CuInS2 QDs based 1D TiO2 hybrid photoelectrode with enhanced photocatalytic activity. Mater Sci Semicond Process 99:106–113. https://doi.org/10.1016/j.mssp.2019.04.021
Article
CAS
Google Scholar
Rasheed T, Bilal M, Nabeel F, Lqbal HMN, Li CL, Zhou YF (2018) Fluorescent sensor-based models for the detection of environmentally related toxic heavy metals. Sci Total Environ 615(1):476–485. https://doi.org/10.1016/j.scitotenv.2017.09.126
Article
CAS
PubMed
Google Scholar
Dang YL, Hao L, Zhou TY, Cao JX, Sun YY, Pan DD (2019) Establishment of new assessment method for the synergistic effect between umami peptides and monosodium glutamate using electronic tongue. Food Res Int 121:20–27. https://doi.org/10.1016/j.foodres.2019.03.001
Article
CAS
PubMed
Google Scholar
Westhuizen DVD, Eschwege KGVJ, Conradie J (2019) Electrochemistry and spectroscopy of substituted [Ru(phen)3]2+ and [Ru(bpy)3]2+ complexes. Electrochemical Acta 320:134540–134540. https://doi.org/10.1016/j.electacta.2019.07.051
Article
CAS
Google Scholar
Chen YM, Liu YJ, Li Q, Wang KZ (2009) pH- and DNA-induced dual molecular light switches based on a novel ruthenium (II) complex. J Inorg Biochem 103(10):1395–1404. https://doi.org/10.1016/j.jinorgbio.2009.08.002
Article
CAS
PubMed
Google Scholar
Hall JP, Gurung SP, Henle J, Poidl P, Andersson DJ, Lincoln DP, Winter G, Sorensen T, Cardin PDJ, Brazier DJA, Cardin PCJ (2017) Guanine can direct binding specificity of Ru-dipyridophenazine (dppz) complexes to DNA through steric effects. Chem Eur J 23(21):4981–4985. https://doi.org/10.1002/chem.201605508
Article
CAS
PubMed
Google Scholar
Xie H, Yang D, Heller A, Gao ZQ (2007) Electrocatalytic oxidation of guanine, guanosine, and guanosine monophosphate. Biophys J 92(8):L70–L72. https://doi.org/10.1529/biophysj.106.102632
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen MJ, Weng XM, Qing LY, Xu SD, Li H (2011) Electrocatalytic activity of [Ru(bpy)3]2+, toward guanine oxidation upon incorporation of surfactants and SWCNTs. J Appl Electrochem 41(7):795–801. https://doi.org/10.1007/s10800-011-0297-9
Article
CAS
Google Scholar
Stemp EDA, Arkin MR, Barton JK (1997) Oxidation of guanine in DNA by Ru(phen)2(dppz)3+ using the Flash-Quench technique. J Am Chem Soc 119(12):2921–2925. https://doi.org/10.1021/ja963606p
Article
CAS
Google Scholar
Wu ZY, Zhang QX, Huang LJ, Xu YJ, Tang DL (2021) Covalent immobilization of ruthenium polypyridyl complex on multi-walled carbon nanotube supports for oxygen evolution reaction in an alkaline solution. J Power Sources 488:229448. https://doi.org/10.1016/j.jpowsour.2020.229448
Article
CAS
Google Scholar
Setznagl S, Cesarino I (2020) Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1720667
Article
Google Scholar
Li G, Zhao XX, Wang L, Liu WS (2019) Chiral zinc complexes used as fluorescent sensor for natural amino acids. Chem Select 4(32):9317–9321. https://doi.org/10.1002/slct.201902139
Article
CAS
Google Scholar
Bhuiyan AA, Kincaid JR (1999) Synthesis and spectroscopic characterization of a zeolite-entrapped Ru(bpy)2(dpp)2+ complex. Inorg Chem 38(21):4759–4764. https://doi.org/10.1021/ic990359s
Article
CAS
PubMed
Google Scholar
Subagio A, Taufiq HR, Khumaeni A, Umiati NA, Adi K (2022) Simple method for making MWCNTs/Au-NPs-based biosensor electrodes. Mater Res Express. https://doi.org/10.1088/2053-1591/ac4b75
Article
Google Scholar
Yoo LH, Kim H (2011) Conductivities of graphite fiber composites with single-walled carbon nanotube layers. Int J Precis Eng Manuf 12:745–748. https://doi.org/10.1007/S12541-011-0098-4
Article
Google Scholar
Duc Chinh V, Speranza G, Migliaresi C, Van Chuc N, Minh Tan V, Phuong N (2019) Synthesis of gold nanoparticles decorated with multiwalled carbon nanotubes (Au-MWCNTs) via cysteaminium chloride functionalization. Sci Rep. https://doi.org/10.1038/s41598-019-42055-7
Article
PubMed
PubMed Central
Google Scholar
Neeley WL, Essigmann J (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19(4):491–505. https://doi.org/10.1021/tx0600043
Article
CAS
PubMed
Google Scholar
Tanik NA, Demirkan E, Avkut Y (2018) Guanine oxidation signal enhancement in DNA via a polyacrylonitrile nanofiber-coated and cyclic voltammetry-treated pencil graphite electrode. J Phys Chem Solids 118:73–79. https://doi.org/10.1016/j.jpcs.2018.03.001
Article
CAS
Google Scholar
Brett AMO, Diculescu V, Piedade JAP (2002) Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode. Bioelectrochemistry 55(1–2):61–62. https://doi.org/10.1016/S1567-5394(01)00147-5
Article
Google Scholar
Hong W, Li H, Yao S, Sun F, Xu ZH (2009) Mediated oxidation of guanine by [Ru(bpy)2d pp]2+ and their electrochemical assembly on the ITO electrode. Electrochem Acta 54(12):3250–3254. https://doi.org/10.1016/j.electacta.2008.12.031
Article
CAS
Google Scholar
Wang QL, Chen MM, Zhang HQ, Wen W, Zhang XH, Wang SF (2016) Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin A. Sens Actuators, B Chem 222:264–269. https://doi.org/10.1016/j.snb.2015.08.057
Article
CAS
Google Scholar
Wünsche M, Schillinger C, Mitterbach A, Geis-Gerstorfer J, Prokop G (2019) Electrochemical impedance spectroscopy and corrosion point counting on metal sheet edges with different cathodic dip coat materials. Mater Corros 70(6):1026–1035. https://doi.org/10.1002/maco.201810392
Article
CAS
Google Scholar
Shaffer DL, Feldman KE, Chan EP, Stafford GR, Stafford CM (2019) Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy. J Membr Sci 583:248–257. https://doi.org/10.1016/j.memsci.2019.04.062
Article
CAS
Google Scholar
Liska A, Triskova L, Ludvik J, Trnkova L (2019) Oxidation potentials of guanine, guanosine and guanosine-5ʹ-monophosphate: theory and experiment. Electrochem Acta 318:108–119. https://doi.org/10.1016/j.electacta.2019.06.052
Article
CAS
Google Scholar
Feng QM, Wang MY, Chen Q, Wang P (2018) Direct electrochemical detection of guanosine-5′-monophosphate at choline monolayer supported and gold nanocages functionalized carbon nanotubes sensing interface. Sens Actuators, B Chem 274:343–348. https://doi.org/10.1016/j.snb.2018.07.114
Article
CAS
Google Scholar
Wang J, Zhu LY, Zhang WL, Wei ZB (2019) Application of the voltametric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins. Anal Chem Acta 1050:60–70. https://doi.org/10.1016/j.aca.2018.11.016
Article
CAS
Google Scholar
Choi SJ, Lee DM, Yu H, Jang JS, Kim MH, Kang JY, Jeong HS, Kim HD (2019) All-carbon fiber-based chemical sensor: Improved reversible NO2 reaction kinetics. Sens Actuators, B Chem 290:293–301. https://doi.org/10.1016/j.snb.2019.03.134
Article
CAS
Google Scholar
Shetti NP, Malode SJ, Llager D, Kakarla RR, Shukla SS, Aminabhavi TM (2019) A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 31(6):163–173. https://doi.org/10.1002/elan.201800775
Article
CAS
Google Scholar
Fei QQ, Zhang NN, Sun C, Zhang PP, Yang XD, Hua YH, Li L (2019) A novel non-enzymatic sensing platform for determination of 5ʹ-guanosine monophosphate in meat. Food Chem 286:515–521. https://doi.org/10.1016/j.foodchem.2019.02.052
Article
CAS
PubMed
Google Scholar
Pagliara AS, Goodman AD (1970) Effect of 3’,5ʹ-GMP and 3’,5ʹ-IMP on production of glucose and ammonia by renal cortex. Am J Physiol 218(5):1301–1306. https://doi.org/10.1152/ajplegacy.1970.218.5.1301
Article
CAS
PubMed
Google Scholar
Phan CW, Wang JK, Cheah SC, Naidu M, David P, Sabaratnam V (2017) A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides. Crit Rev Biotechnol 38(5):762–777. https://doi.org/10.1080/07388551.2017.1399102
Article
CAS
PubMed
Google Scholar
Kong Y, Yang X, Ding Q, Zhang YY, Sun BG, Chen HT, Sun Y (2017) Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res Int 102:559–566. https://doi.org/10.1016/j.foodres.2017.09.038
Article
CAS
PubMed
Google Scholar
Sun C, Gao L, Wang DY, Zhang MH, Liu Y, Geng ZM, Xu WM, Liu F, Bian H (2016) Biocompatible polypyrrole-block copolymer-gold nanoparticles platform for determination of inosine monophosphate with bi-enzyme biosensor. Sens Actuators, B Chem 230:521–527. https://doi.org/10.1016/j.snb.2016.02.111
Article
CAS
Google Scholar
Zhang C, Chen XH, Tan LJ, Wang JT (2018) Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environ Sci Pollut Res 25(13):13127–131331. https://doi.org/10.1007/s11356-018-1580-7
Article
CAS
Google Scholar
Nie Q, Zhang W, Wang LR, Guo Z, Li CY, Yao J, Li M, Wu DM, Zhou LQ (2018) Sensitivity enhanced stability improved ethanol gas sensor based on multi-wall carbon nanotubes functionalized with Pt-Pd nanoparticles. Sens Actuators B Chem 270(1):140–148. https://doi.org/10.1016/j.snb.2018.04.170
Article
CAS
Google Scholar
Yu LY, Zhang Q, Yang BR, Xu Q, Xu Q, Hu XY (2018) Electrochemical sensor construction based on Nafion/calcium lignosulphonate functionalized porous graphene nanocomposite and its application for simultaneous detection of trace Pb2+ and Cd2+. Sens Actuators, B Chem 259:540–551. https://doi.org/10.1016/j.snb.2017.12.103
Article
CAS
Google Scholar
Jeevagan A, John S (2013) Electrochemical determination of guanosine 5′-monophosphate using the electropolymerized film of non-peripheral amine substituted nickel (II) phthalocyanine modified electrode. Electrochem Acta 95:246–250. https://doi.org/10.1016/j.electacta.2013.02.025
Article
CAS
Google Scholar
Yin H, Zhou Y, Ma Q, Liu T, Ai S, Zhu L (2010) Electrochemical oxidation behavior of guanosine-5´-monophosphate on a glassy carbon electrode modified with a composite film of graphene and multi-walled carbon nanotubes, and its amperometric determination. Microchem Acta 172(3–4):343–349. https://doi.org/10.1007/s00604-010-0499-6
Article
CAS
Google Scholar
Shi F, Wang X, Wang W, Sun W (2015) Electrochemical behavior and determination of guanosine-5′-monophosphate on a ionic liquid modified carbon electrode. J Anal Chem 70(2):186–192. https://doi.org/10.1134/s1061934815020057
Article
CAS
Google Scholar
Yin H, Zhou Y, Ma Q, Ai S, Ju P, Zhu L, Lu L (2010) Electrochemical oxidation behavior of guanine and adenine on graphene–Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45(10):1707–1712. https://doi.org/10.1016/j.procbio.2010.07.004
Article
CAS
Google Scholar